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Abstract

The filters learned by Convolutional Neural Networks (CNNs) and the feature maps
these filters compute are sensitive to convolution arithmetic. Several architectural
choices that dictate this arithmetic can result in feature-map artifacts. These artifacts
can interfere with the downstream task and impact the accuracy and robustness.
We provide a number of visual-debugging means to surface feature-map artifacts
and to analyze how they emerge in CNNs. Our means help analyze the impact of
these artifacts on the weights learned by CNNs. Guided by our analysis, model
developers can make informed architectural choices that can verifiably mitigate
harmful artifacts and improve the model’s accuracy and its shift robustness.

1 Background and Motivation

The majority of work on visualizing convolutional neural networks (CNNs) has focused on un-
derstanding the features they learn [11, 21, 34]. Techniques such as feature saliency in a given
input [3, 25, 28, 34], input optimization [33, 19, 21], and concept-based interpretation [10, 12] have
improved our understanding of how CNNs work [24]. Furthermore, these techniques can expose
certain limitations of CNNs such as decisions based on unreliable visual cues [14].

A number of techniques were proposed to explore various aspects of CNNs beyond interpreting
the features and concepts they learn. For example, recent work has focused on visualizing the
weights [22, 31] in order to analyze the role of individual filters and to expose patterns in a cohort
thereof. Another piece of work has focused on branch specialization in CNNs [32]. Besides, several
techniques have been proposed to analyze CNN predictions in order to expose patterns in erroneous
ones [1, 6] and to subsequently shed light into the model’s behavior.

In this work, we focus on exposing subtle effects in CNN innards caused by several aspects of
convolution arithmetic [9]. These effects directly manifest in the feature maps computed within
the CNN, in the form of artifacts. These effects can further manifest in the learned weights, in the
form of asymmetries. Both issues have been partly discussed in a recent work [2]. Our contribution
lies in providing generic visual means to inspect the feature maps and the learned weights for such
artifacts and asymmetries. We demonstrate how debugging these effects help improve the accuracy
and robustness of CNN-based models, besides deepening our understanding of their innards.

2 Visualizing Feature-Map Artifacts

A naive way to inspect feature maps inside CNNs for potential artifacts is to generate them for
a number of images. However, this poses challenges regarding scalability and ability to spot the
artifacts, as we explain next.
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2.1 Enabling Scalable Inspection

Each layer in a CNN typically computes hundreds of feature maps for every input. To enable scalable
analysis, we aggregate the feature maps per layer to provide an overview. Figure 1 shows the mean
feature map computed for a real scene in the CNN backbone of an SSD object detector [26].

Figure 1: The per-layer mean feature map computed by an open-source SSD object detector [26] for
a natural scene from the BSTLD dataset [5]. The title indicates the spatial dimensions of the averaged
feature maps, as well as their count. The pink arrow draws attention to line artifacts in the final map.

Besides reducing the information overload, aggregation via averaging often helps surface systematic
artifacts since it reinforces ones that recur in multiple maps while partially washing out benign areas
in the maps. The final map in Figure 1, highlighted with a pink arrow, demonstrates an example of
these artifacts. We will elaborate later on how convolution arithmetic can incur such artifacts.

2.2 Making the Artifacts Stand Out

Aggregating the feature maps of a layer only partially helps surface systematic artifacts in these maps.
This is because the natural activation patterns can still interfere with these artifacts (Figure 1). To
improve the visibility of the artifacts, we feed a baseline input into the CNN instead of natural images.
We found the following baselines useful for that purpose:

Random inputs We generate k images uniformly at random and feed them to the CNN. Figure 2
depicts the mean feature map per layer, when using one random input (k = 1). These maps largely
retain a random activation pattern, except for line artifacts that emerge around the boundaries at
deeper layers. This makes these artifacts stand out better than when feeding a natural input. When
feeding multiple input samples (k > 1), we aggregate the feature maps per layer further over these
samples which helps smoothening the mean maps.

Constant input With a constant input, the feature maps are largely constant. This enables analyzing
subtle artifacts in these maps such as line, grid, and checker-board patterns (Figure 4). A zero-valued
input (a gray image), a maximal input (a white image), or a minimal input (a black image) can be a
suited choice, depending on the dataset and the model.
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Figure 2: The same mean feature maps depicted in Figure 1, computed for a randomly generated
input. This improves the visibility of subtle line artifacts in the final map.

Simplified input The former two options eliminate selective and localized neuron activation that
occurs in CNNs when feeding natural images, because they lack visual features that trigger such
activation patterns. To analyze these patterns we can add a visual stimulus to a constant input and
feed it to the CNN. Figure 3 demonstrates an example stimulus feed into a DeepLab-V3 semantic-
segmentation model [7], trained on CityScapes [8]. This reveals artifacts that potentially impact how
this stimulus is processed by the CNN. For example, in Figure 3 the stimulus leads to nine localized
activation areas at layerclassifier_conv_1, spaced out at an equal distance. Interestingly, this
distance is equal to the dilation factor applied at this layer.

2.3 Drilling-down on Demand

Aggregation is useful to detect feature-map artifacts and to analyze their progression over successive
layers. Besides, we enable users to drill-down into individual feature maps of a selected layer to
closely examine how these artifacts emerge. Figure 4 depicts a number of individual maps from
layer classifier_conv_1 of the aforementioned DeepLab-V3 model, generated by feeding a
zero-valued input. While the majority of these maps are constant, several maps exhibit multiple line
artifacts. These artifacts also appear when feeding a natural input, and can hence interfere with the
extracted features and impact the segmentation quality.

2.4 What Causes the Artifacts?

The architectural choices that dictate the CNN arithmetic are behind the artifacts we demonstrate in
previous sections. In particular, the padding mechanism, while fundamental, introduces an artificial
boundary around the feature maps, especially under 0-padding. Over multiple convolutional layers,
this boundary interacts with neighboring values and can gradually interfere with the activation patterns
inside the feature maps beyond the boundary. This interference has been investigated in details in a
recent work [2] that demonstrates its significant impact on small object detection.
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Figure 3: The per-layer mean feature maps computed by a DeepLab-V3 segmentation model for a
simplified input that contains a stimulus. The model is trained on the CityScapes dataset [8]. The
title indicates the spatial dimensions of the averaged feature maps, as well as their count.

Figure 4: The individual feature maps at layer layerclassifier_conv_1 computed by the same
model in Figure 3 for a zero-valued input. The title indicates the spatial dimensions of the maps.
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Another source of the artifacts is the downsampling mechanism used, such as pooling techniques and
strided convolutions. This mechanism can amplify boundary effects and accelerate their interference
with the rest of the feature maps. Moreover, the use of strides often incurs aliasing effects [35] and
checkerboard artifacts [20]. Finally, downsampling can lead to skewness in the learned weights as we
demonstrate in Section 3.

Besides the above-mentioned components of convolution arithmetic, dilation factors can also influence
the emergence of feature-map artifacts and the patterns these artifacts take, as illustrated in Figure 3.
Likewise, the input size also has an influence on these artifacts, since it is involved in the convolution
arithmetic. Finally, non-arithmetic architectural choices can further amplify or dampen feature-map
artifacts, such as normalization schemes and antialiasing [35].

2.5 Performance Implications of Feature-Map Artifacts

The artifacts presented in the previous sections can impact the accuracy and the robustness of CNNs.
Such impact varies depending on the task, the training data, and the architecture.

For example, artifacts induced by zero padding were shown to cause blind spots in single-shot
detectors (SSDs), hindering small object detection at impacted areas [2]. The same study demonstrates
how using mirror padding in SSDs drastically reduce these artifacts, in turn, eliminating these blind
spots. The authors demonstrate the average precision of an SSD-based traffic light detector improved
from 49.58% under zero padding to 57% under mirror padding. Padding choices were further shown
to impact the accuracy of image classification [15] and semantic segmentation [15, 18].

3 Visualizing Asymmetries in the Learned Weights

Besides impacting model inference, feature-map artifacts can further impact the weights learned by
the CNN during training. In particular, these weights might adapt to accommodate the presence of
these artifacts during training. We aim to reveal such adaptation patterns in the learned weights. For
this purpose we compute the mean k × k patch in the input of each convolution layer, averaged over
the spatial positions, the channels, and the instances of the training set as Figure 5 illustrates. We also
compute the mean k × k kernel in the weights of the corresponding layer. Figure 6 demonstrates our
analysis on two ResNet-50 models trained on ImageNet images using two different sizes of the input
images, 224× 224 and 225× 225. In each case, we depict the mean 3× 3 patch in the padded input
of each 3× 3 convolutional layer in ResNet-50, besides the mean kernel of the layer weights.

Figure 5: An illustration of the elements we use to analyze the impact of feature-map artifacts in a
given layer on the weights it learns. Computing the mean k × k patch over the entirety of ImageNet
is quite time-consuming. Fortunately, with a small k, a good approximation of this mean is possible
with a few hundreds of samples.
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Figure 6: Analyzing asymmetries in two ResNet-50 models trained on ImageNet using different
input sizes. For each 3× 3 convolutional layer, we depict the mean 3× 3 patch in the layer’s input
and the mean kernel of its filters. Downsampling layers are highlighted in blue.

Main Observations We notice that the majority of mean patches are symmetric about their centers.
Surprisingly, all salient exceptions appear when the model is trained on 224× 224 images. Moreover,
patches the exhibit asymmetry are from the input to the three layers with stride = 2 (highlighted in
blue) or the layers preceding them 1. Interestingly, the mean kernels of these stride-convolution layers
exhibit similar asymmetries, which is highly evident at layer2.0.conv2 and layer2.0.conv2.
Moreover, these asymmetries disappear when the model is trained with 225× 225 images.

1One exception is the first depicted patch for layer1.0.conv2. This layer is preceded by a maxpool layer
and a 2-strided convolutional layer (Figure 7), neither of which is depicted to focus Figure 6 on 3× 3 filters.
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Figure 7: Illustrating the problem of uneven padding. The top row shows how an 224× 224 input
makes ResNet-50 ignore 1 pixel padding at the right and bottom side of every downsampling layer.
In contrast, the bottom row shows how an 225× 225 leaves no padding unconsumed.

Explaining the Asymmetries

To explain the above observations, we closely examine how downsampling layers in both models
process their input, as illustrated in Figure 7. It is evident that these layers ignore parts of the padding
applied when their input size is an even number. This happens at every downsampling layer when the
CNN input size is 224× 224. The unconsumed padding occurs only at the right and bottom sides
of the feature maps. Since ResNet models fill the padding areas with zeros, failing to consume the
padding at the right and bottom sides does change the statistics of the layer input. This explains why
the mean 3 × 3 patches highlighted in Figure 6 exhibit asymmetries when the CNN input size is
224× 224 input, thanks to the over-representation of zeros at the top and left borders. On the other
hand, when this size is 225 × 225 the padding is fully consumed at all sides of the feature maps,
making the mean patches highly symmetric.

Since the convolution involves multiplying 3× 3 patches with corresponding 3× 3 weight kernels,
any asymmetries that govern these patches in the training set are likely to be reflected in the learned
weights. This explains the strong asymmetries we observe in certain mean kernels when the CNN
is training on 224× 224 images 2. This also explains the high symmetry of the mean kernels when
training on 225× 225 images.

In summary, the skewness we exposed collectively in the learned weights at certain layers is the
CNN’s way to adapt to the uneven application of padding to the input of these layers. This skewness
is an artifact of CNN arithmetic: It does not capture inherent semantic information about the
classification task since it disappears when uneven application of padding is eliminated. Ensuring
even application of padding was shown to improve the accuracy and the translation invariance of the
CNN on ImageNet [2]. This demonstrates the value of exposing potential artifacts of CNN arithmetic.

Limitations Exposing asymmetries in the learned weights becomes challenging with kernels larger
than 3×3 in size, unless windowing is applied [29]. Moreover, the asymmetries might not necessarily
be an artifact of CNN arithmetic, but rather reflect semantic properties of the dataset such as dominant
vertical strokes in handwritten digits or letters. Analyzing the dataset features and examining the
weight kernels under different hyperparameters can help determine possible reasons for asymmetry.

2One exception is the mean kernel at layer2.2.conv2. The mean patch in its input does not exhibit
asymmetry. Interestingly, this asymmetry disappears when the model is trained on 225× 225 images.

7



Figure 8: The impact of input statistics on banding effects in learned filters. (a) The mean image in
the ImageNet dataset, depicted in the RGB space. (b) Visualizing the mean image after averaging
over the channels. The color scale used better reveals the difference in brightness between the top and
the bottom areas. (c) A visualization of a few filters from the final convolutional layer in a ResNet-50
model trained on ImageNet (reproduced from [22]). The visualization uses non-negative matrix
factorization to reduce the depth to three channels which are mapped to the RGB space. The visible
banding effect is induced by global-average pooling (GAP), as Petrov et al demonstrated [22]. The
horizontal bands resemble the spatial differences in (b), confirming the role of the training dataset.

4 Lessons learned

We demonstrated how visual analysis of CNN internals can expose critical issues in CNNs that might
otherwise go unnoticed. In fact, it has been known that certain architectural choices can introduce
artifacts, however, CNNs were assumed able to implicitly handle them. We hope the following
components of our analysis could inspire similar debugging and exposition techniques:

Baseline inputs Feeding a constant or near-constant input to a CNN helps simplify the internals it
computes which, in turn, helps surface abnormalities in the internals. Feeding random inputs can also
help in exposing systematic bias in these internals.

Aggregation and Ensemble Analysis Computing the mean feature map and the mean kernel in a
layer is crucial to expose systematic spatial bias and asymmetries at that layer. Aggregation enables
these patterns to emerge collectively, unlike the analysis of individual filters or feature maps.

Visual Representation Considering multiple visual representations of the model internals is helpful
to iteratively reveal subtle patterns and variations that might influence the model behavior. Figure 8
demonstrates how a naive depiction of the mean image in ImageNet (Figure 8a) falls short of revealing
spatial variations in this image, unlike a heatmap (Figure 8b). These variations help explain the
banding effects in the learned weights, recently observed by Petrov et al [22] (Figure 8c), and confirm
the role of the training data in the emergence of these effects.

Insights From Signal Processing Several phenomena related to CNNs have already been studied in
signal and image processing. For example, zero padding has been known to cause image artifacts [16],
with several alternatives proposed in the literature to mitigate them [17]. Likewise, insights from
sampling theory have helped reducing aliasing effects in CNNs [35], and windowing techniques were
shown to reduce spectral leakage and the artifacts it induces in CNN internals [29].

5 Related Work

A variety of prior art shares similar goals or employs similar analysis techniques to the ones we
presented. For example, image artifacts have been studied extensively in the context of generative
models, focusing on how they develop in the model internals and how they can be mitigated [4, 30].
Likewise, Shocher et al [27] studied the impact of downsampling mechanisms on the learned filters.
Qian et al [23] use mean attention maps to demonstrate aliasing issues in vision transformers. Finally,
baseline inputs are widely used in in various feature-attribution algorithms that help explain model
decisions [13] .
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6 Conclusion

Convolution arithmetic can be a source of artifacts that impact the innards of CNNs. These artifacts
manifest both in the feature maps and in the weight kernels. We presented visual means to expose
these artifacts, to analyze why and how they emerge, and to understand their impact on the task. Our
open-source means leverage the power of visualization along with deliberate inputs and aggregation
schemes. We exemplified several insights enabled by our analysis and demonstrated how they help
model developers make informed decisions to mitigate the aforementioned artifacts and biases,
and as a result improve the accuracy and robustness of their models. Future work can dive deeper
into how the effects we expose impact specific CNN tasks, and whether similar effects appear in
transformer-based models and hybrid CNN and transformer models.

Figure 9: A screenshot of our interactive visual-debugging tool showing an overview of the feature-
map artifacts in a ResNet-18 model. The small red arrows aim to mark down-sampling layers.
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