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Abstract

SHAP (SHapley Additive exPlanation) values are one of the leading tools for inter-
preting machine learning models, with strong theoretical guarantees (consistency,
local accuracy) and a wide availability of implementations and use cases. Even
though computing SHAP values takes exponential time in general, TreeSHAP takes
polynomial time on tree-based models. While the speedup is significant, TreeSHAP
can still dominate the computation time of industry-level machine learning solu-
tions on datasets with millions or more entries, causing delays in post-hoc model
diagnosis and interpretation service. In this paper we present two new algorithms,
Fast TreeSHAP v1 and v2, designed to improve the computational efficiency of
TreeSHAP for large datasets. We empirically find that Fast TreeSHAP v1 is 1.5x
faster than TreeSHAP while keeping the memory cost unchanged. Similarly, Fast
TreeSHAP v2 is 2.5x faster than TreeSHAP, at the cost of a slightly higher memory
usage, thanks to the pre-computation of expensive TreeSHAP steps. We also show
that Fast TreeSHAP v2 is well-suited for multi-time model interpretations, resulting
in as high as 3x faster explanation of newly incoming samples. The link to the code
repository to replicate the results in this paper is https://drive.google.com/
drive/u/4/folders/1POVOVj42K04QcT39wmbMM4Y6joyc67ZQ.

1 Introduction

Predictive machine learning models are almost everywhere in industry, and complex models such as
random forest, gradient boosted trees, and deep neural networks are being widely used due to their
high prediction accuracy. However, interpreting predictions from these complex models remains
an important challenge, and many times the interpretations at individual sample level are of the
most interest [28]. There exist several state-of-the-art sample-level model interpretation approaches,
e.g., SHAP [20], LIME [28]], and Integrated Gradient [31]. Among them, SHAP (SHapley Additive
exPlanation) calculates SHAP values quantifying the contribution of each feature to the model
prediction, by incorporating concepts from game theory and local explanations. In contrast to other
approaches, SHAP has been justified as the only consistent feature attribution approach with several
unique properties which agree with human intuition. Due to its solid theoretical guarantees, SHAP
becomes one of the top recommendations of model interpretation approaches in industry [21} 34} 2} |3]].

There exist several variants of SHAP. The general version is KernelSHAP [20], which is model-
agnostic, and generally takes exponential time to compute the exact SHAP values. Its variants include
TreeSHAP [19, 18] and DeepSHAP [20], which are designed specifically for tree-based models (e.g.,
decision tree, random forest, gradient boosted trees) and neural-network models. In these variants,
the special model structures may lead to potential improvements in computational efficiency. For
example, the tree structure enables a polynomial time complexity for TreeSHAP. In this paper, we
choose TreeSHAP for further exploration, as tree-based models are widespread in industry.
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After looking into many TreeSHAP use cases, we find out that despite its algorithmic complexity
improvement, computing SHAP values for large sample size (e.g., tens of millions of samples) or
large model size (e.g., maximum tree depth > 10) still remains a computational concern in practice.
For example, explaining 20 million samples for a random forest model with 400 trees and maximum
tree depth 12 can take as long as 15 hours even on a 100-core server (more details in Appendix [A.TT).
In fact, explaining (at least) tens of millions of samples widely exist in member-level predictive
models in industry, e.g., feed ranking model, ads targeting model, and subscription propensity
model. Spending tens of hours in model interpretation becomes a significant bottleneck in these
modeling pipelines: On one hand, it is likely to cause huge delays in post-hoc model diagnosis via
important feature analysis, increasing the risks of incorrect model implementations and untimely
model iterations. On the other hand, it can also lead to long waiting time in preparing actionable
items for model end users (e.g., marketing team in subscription propensity model) based on feature
reasoning [33]], and as a result, the end users may not take appropriate actions in a timely manner,
which can negatively impact the company’s revenue.

In this paper, we conduct a thorough inspection into the TreeSHAP algorithm, with the focus on
improving its computational efficiency for large size of samples to be explained. In this, we take
the number of samples into consideration in our time complexity analysis of TreeSHAP algorithm.
We propose two new algorithms - Fast TreeSHAP v1 and Fast TreeSHAP v2. Fast TreeSHAP vl is
built based on TreeSHAP by redesigning the ways of calculating certain computationally-expensive
components. In practice, Fast TreeSHAP vl is able to consistently boost the computational speed
by ~1.5x with the same memory cost as in TreeSHAP. Fast TreeSHAP v2 is built based on Fast
TreeSHAP v1 by further pre-computing certain computationally-expensive components which are
independent with the samples to be explained. It is able to largely reduce the time complexity when
calculating SHAP values, leading to 2-3x faster computational speed than TreeSHAP in practice
with just a small sacrifice on memory. The pre-computation step in Fast TreeSHAP v2 enables its
suitability in multi-time model interpretations, where the model is pre-trained and remains unchanged,
and new scoring data are coming on a regular basis.

2 Related Work

Since the introductions of SHAP [20] and TreeSHAP [19,[18]], many related works have been done
in this area. Most of them focus on the application side in a variety of areas, including medical
science [21} 134} 2I], social science [4], finance [3] and sports [29]. There also exist a lot of exciting
papers focusing on the designs of SHAP/TreeSHAP implementations [32} 27,12} 33]], as well as the
theoretical justification of SHAP values [[L1} 17,30} L1 [7} 123} S]]

Besides these works, only a few of them focus on the computational efficiency of SHAP/TreeSHAP:
The authors of [8] developed a Python package fastshap to approximate SHAP values for arbitrary
models by calling scoring function as few times as possible. In [9]], a model-agnostic version of SHAP
value approximation was implemented on Spark. Both works were not specifically designed for tree-
based models, and thus the advanced polynomial time complexity may not be leveraged. The authors
of [22][16]] built R packages shapper and treeshap as R wrappers of SHAP Python library, which
achieved comparable speed. However, no algorithmic improvements have been made. In [24} 23],
MASHAP was proposed to compute SHAP values for arbitrary models in an efficient way, where an
arbitrary model is first approximated by a surrogate XGBoost model, and TreeSHAP is then applied
on this surrogate model to calculate SHAP values. The most related work of improving computational
efficiency in TreeSHAP as far as we know is [26], where the authors presented GPUTreeShap as
a GPU implementation of TreeSHAP algorithm. Our work is different from GPUTreeShap as our
work focuses on improving the computational complexity of the algorithm itself, while the parallel
mechanism of GPU rather than the improvement of algorithm complexity has led to the speedup of
GPUTreeShap. In our future work, it is possible to further combine Fast TreeSHAP v1 and v2 with
GPUTreeShap.

3 Background

In this section, we review the definition of SHAP values [20], and then walk through the derivation of
TreeSHAP algorithm [19,|18] which directly leads to the development of Fast TreeSHAP v1 and v2.



3.1 SHAP Values

Let f be the predictive model to be explained, and IV be the set of all input features. f maps an input
feature vector z € R/ to an output f(z) where f(x) € R in regression and f(x) € [0, 1] in (binary)
classification. SHAP values are defined as the coefficients of the additive surrogate explanation
model: g(z") = ¢o + ;e y Pi2i. Here 2 € {0, 1}V represent a feature being observed (2} = 1) or
unknown (z; = 0), and ¢; € R are the feature attribution values. Note that the surrogate explanation
model g(z’) is a local approximation to the model prediction f(z) given an input feature vector x.

As described in [20], SHAP values are the single unique solution of ¢;’s in the class of additive surro-
gate explanation models g(z’) that satisfies three desirable properties: local accuracy, missingness,
and consistency. To compute SHAP values we denote fg(x) as the model output restricted to the
feature subset S C NN, and the SHAP values are then computed based on the classic Shapley values:
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It is still remaining to define fg(x). In recent literature, there exist two main options for defining
fs(x): the conditional expectation fs(x) = E[f(z)|rs] = E, |25 [f(2)], and the marginal expec-
tation fg(x) = E,.[f(x)], where g is the sub-vector of x restricted to the feature subset S, and
S = N\S. While it is still debating which option is more appropriate [[11}, 17,30} T} [7, 23, 5]}, both
options need exponential time in computation as Equation[I| considers all possible subsets in V.

3.2 SHAP Values for Trees

For a tree-based model f, we note that it is sufficient to investigate the ways to calculate SHAP values
on a single tree, since the SHAP values of tree ensembles equal the sums of SHAP values of its
individual trees according to the additivity property of SHAP values [19,[18]]. The authors of [19, [18]]
define a conditional expectation fs(z) = E|[f(x)|zs] for tree-based models. The basic idea is to
calculate fg(x) by recursively following the decision path for z if the split feature in the decision
path is in .S, and taking the weighted average of both branches if the split feature is not in .S. We use
the proportions of training data that flow down the left and right branches as the weights.

Algorithm [1] proposed in [19} [18] (Appendix provides the details to calculate fs(x) for tree-
based models. A tree is specified as a tuple of six vectors {v, a, b, t,r,d}: v contains the values of
each leaf node. a and b represent the left and right node indexes for each internal node. ¢ contains
the thresholds for each internal node, d contains the feature indexes used for splitting in internal
nodes, and r represents the cover of each node (i.e., how many training samples fall in that node).
The time complexity of calculating fs(x) in Algorithm([I)is O(L), where L is the number of leaves
in a tree, since we need to loop over each node in the tree. This leads to an exponential complexity
of O(MTL2™!) for computing SHAP values for M samples with a total of T trees. We next show
how TreeSHAP can help reduce this time complexity from exponential to polynomial.

3.3 TreeSHAP

TreeSHAP proposed in [19, 18] runs in O(MT LD?) time and O(D? + |N|) memory, where M
is the total number of samples to be explained, | N| is the number of features, T is the number of
trees, D is the maximum depth of any tree, and L is the maximum number of leaves in any tree. The
intuition of the polynomial time algorithm is to recursively keep track of the proportion of all possible
feature subsets that flow down into each leaf node of the tree, which is similar to running Algorithm|[T]
simultaneously for all 2!V feature subsets. We recommend readers to check [19,[18]] for the algorithm
details. In this paper, we present our understanding of the derivation of the TreeSHAP algorithm,
which also leads to our proposed Fast TreeSHAP algorithms with computational advantage.

We introduce some additional notations. Assume in a given tree {v, a, b, t, r, d}, there are K leaves
with values vy to vg, corresponding to K paths P; to Py, where path Py, is the set of internal nodes
starting from the root node and ending at the leaf node vy, (leaf node vy, is not included in the path). We
use j € P to denote the jth internal node in path Py, hereafter. We also use Dy, = {d; : j € Py} to
denote the feature set used for splitting in internal nodes in path Pj. Moreover, we denote the feature
subspaces restricted by the thresholds along the path Py, as {T}; : j € Py}, where Tj; = (—00, ty;]



if node j connects to its left child in path P or Tj,; = (t;, 00) if node j connects to its right child
in path Py ({tkj : j € Py} are the thresholds for internal nodes in path Py), and we also denote the
covering ratios along the path Py, as {Ry; : j € Py}, where Ry =y j1/7mk ({1 1 j € P} are
the covers of internal nodes in path Py). The formula of fg(z) in Algorithm can be simplified as:

K
fs(z) = Z H H{za; € Thy}- H Ryj - v,
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where 1{-} is an indicator function. Let W}, g := HjePk,djeS Hza, € Thy} - HjePk,djes Ry,

ie., Wy g is the "proportion" of subset S that flows down into the leaf node vy, then

fs(z) = Zszl Wi svi. Plugging it into Equation |l| leads to the SHAP value ¢; =
SP(IN[=|S|=1)! K
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Theorem 1. ¢; can be computed by only considering the paths which contain feature i and all the
subsets within these paths (i.e., instead of considering all 2N subsets). Specifically,
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The proof of Theoremcan be found in Appendix For convenience, we call % the
"Shapley weight" for subset size m and path P,. We point out that the TreeSHAP algorithm is
exactly built based on Theorem[I] Specifically, the EXTEND method in TreeSHAP alogithm keeps
track of the sum of the "proportion"s of all subsets that flow down into a certain leaf node weighted
by its Shapley weight for each possible subset size. When descending a path, EXTEND is called
repeatedly to take a new feature in the path and add its contribution to the sum of the "proportion"s

of all feature subsets of size 1,2, - -- up to the current depth. At the leaf node, EXTEND reaches

m!(|Dg|—m)!
the sequence of values % ZSCDk7|S\:m(Hjepk7djes ]l{l’dj € Try} HjePk,djeDk\S Ryj)
for each possible subset size m = 1, - - - || Dg|. The UNWIND method in TreeSHAP algorithm is

used to undo a previous call to EXTEND, i.e., to remove the contribution of a feature previously added
via EXTEND, and is indeed commutative with EXTEND. UNWIND can be used when duplicated
features are encountered in the path, or at the leaf node when calculating the contribution of each
feature in the path to SHAP values according to Equation 2]

4 Fast TreeSHAP

We now further simplify Equation [2|for an even faster computational speed. Consider a subset S, C
Dy, which consists of all the features in Dy, not satisfying the thresholds along the path Py, i.e., Sy =
{d; : j € Py, a; ¢ Tis}. Also define Uy, p, o = "85 5700 Tliepea,cons Bk
form =0,---,|C], where C' C Dy is a subset of D. We see that when C' = Dy \ Sy, Uy, b, D\ Sk
can be interpreted as the sum of the "proportion"s of all subsets that flow down into a leaf node vy,
(each feature in the subsets must satisfy the thresholds along the path P;) weighted by its Shapley
weight for subset size m. Finally, we define Up, ¢ := Zflzo I‘g:l‘:}%
simplifies Equation [2] (proof in Appendix [A.4):

U, p,,c. Theorem [2| further

Theorem 2. ¢; can be computed by only considering the subsets within the paths where each feature
in the subsets satisfies the thresholds along the path. Specifically,

- Zk:ieDk |:UDk7Dk\Sk H,jEPk7dj6Sk Rk]} Vk if i € Sy,

¢ = L
Zk:z’eDk {UDk,Dk\({i}USR) HjePk.,d,-eSk Ry;(1— HjePk,djzi Rkj)} vk ifi ¢ S.
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4.1 Fast TreeSHAP v1 Algorithm

We propose Fast TreeSHAP v1 algorithm based on Theoremwhich runs in O(MTLD?) time and
O(D? + |N|) memory. This computational complexity looks the same as in the original TreeSHAP.
However, we will show in section[4.1.1] and [5 that the average running time can be largely reduced.

In Fast TreeSHAP v1 algorithm (Algorithm [2]in Appendix [A.3]), we follow the similar algorithm
setting as in the original TreeSHAP algorithm, where both EXTEND and UNWIND methods are
being used. The EXTEND method is used to keep track of U, p, p,\s, form =0,---,|Dg|—[Sk|.
Remind that U, p, p,\s, is the sum of the "proportion"s of all subsets that flow down into a leaf
node vy, (each feature in the subsets must satisfy the thresholds along the path P;) weighted by
its Shapley weight for subset size m. Compared with the EXTEND method in the original TreeSHAP
algorithm, the main difference is the constraint applied on these subsets (highlighted in bold), which
largely reduces the number of subset sizes to be considered. Specifically, in Fast TreeSHAP v1, when
descending a path, EXTEND is called only when a new feature in the path satisfies the threshold,
and then its contribution to the sum of "proportion"s of all feature subsets of size 1,2, --- up to the
number of features satisfying the thresholds until the current depth is added. When reaching the leaf
node, the number of possible subset sizes considered by EXTEND is | Dy, | — | S| in Fast TreeSHAP
v1 rather than | D] in the original TreeSHAP. The UNWIND method is still used to undo a previous
call to EXTEND. Specifically, it is used when duplicated features are encountered in the path or
when calculating U, p, p,\({i}us,) for i € Dg\Sg, m = 0,--- ,|Dy| — |Sk| — 1 at the leaf node.
Besides EXTEND and UNWIND, we also keep track of the product of covering ratios of all features
not satisfying the thresholds along the path, i.e., [] JEPud; €50 Ryj in Equation which is trivial.

4.1.1 Complexity Analysis

In the original TreeSHAP, the complexity of EXTEND and UNWIND is bounded by O(D), since
both of them need to loop over the number of possible subset sizes, which equals |Dy| in path Py. At
each internal node, EXTEND is called once, while at each leaf node, UNWIND is called D times to
update SHAP values for each of the D features in the path. This leads to a complexity of O(LD?)
for the entire tree because the work done at the leaves dominates the work at the internal nodes.

In Fast TreeSHAP v1, both EXTEND and UNWIND need to loop over the number of possible subset
sizes under the constraint on subset (highlighted in bold), which is | Dy| — | S| in path P. Thus,
although the complexity of EXTEND and UNWIND is still bounded by O(D), the average running
time can be reduced to 50%, which equals the average ratio between the number of possible subset
sizes under constraint and the number of all possible subset sizes, i.e., E[(|Dy| — |Sk|)/|Dx|] =

Zio C4(D —i)/(2P D) ~ 50%. Moreover, according to Equation at the leaf node of Path P,
UNWIND is called | Dy| — |Sk| times for each of the | Dy | — | Sy | features satisfying the thresholds
in the path, and only once for all other features in the path. Therefore, although the number of times
UNWIND being called is still bounded by O(D), the actual number can also be lowered by 50% on
average. As a result, although we still have the complexity of O(LD?) for the entire tree, the average
running time can be reduced to 50% x 50% = 25% compared with the original TreeSHAP. Finally,
the complexity is O(MT LD?) for the entire ensemble of T trees and M samples to be explained,
with the running time reduced to 25% on average compared with the original TreeSHAP.

4.2 Fast TreeSHAP v2 Algorithm

We propose Fast TreeSHAP v2 algorithm that runs in O(TL2P D + MTLD) time and O(L2P)
memory. For balanced trees it becomes O(T'L?D + MTLD) time and O(L?) memory. Compared
with O(MT LD?) time and O(D? + |N|) memory in original TreeSHAP and Fast TreeSHAP v1,
Fast TreeSHAP v2 outperforms in computational speed when the number of samples M exceeds
2P+1/D, where D is the maximum depth of any tree (more details in the next paragraph). Fast
TreeSHAP v2 has a stricter restriction on tree size due to memory concerns. In practice, it works
well for trees with maximum depth as large as 16 in an ordinary laptop, which covers most of the use
cases of tree-based models. We discuss the memory concerns in detail in Sections [4.3]and [5]

The design of Fast TreeSHAP v2 algorithm is inspired by Fast TreeSHAP v1 algorithm. Recall that
the loops of UNWIND at the leaves dominate the complexity of Fast TreeSHAP v1 algorithm, where
the length of each loop is O(D), and each call to UNWIND also takes O (D) time, resulting in O(D?)
time complexity at each leaf node. While looping over each of the D features in the path is inevitable



in updating SHAP values at the leaf node (i.e., the loop of length O(D) is necessary), our question
is: Is it possible to get rid of calling UNWIND? From Equation 3] we see that, the ultimate goal of
calling UNWIND is to calculate Up, p,\s, and Up, p,\(fitus,) for i € Dy \Sk. We also note that
for different samples to be explained, although S may vary from sample to sample, all the possible
values of Up, p,\s, and Up, p,\(fiyus,) for i € Dy \Sk fall in the set {Up, ¢ : C C Dy} with
size 2P+, Therefore, a natural idea to reduce the computational complexity is, instead of calling
UNWIND to calculate Up, p,\s, and Up, p,\({ijus,) for i € Dp\Si every time we explain a
sample, we can pre-compute all the values in the set {Up, ¢ : C' C Dy} which only depend on
the tree itself, and then extract the corresponding value when looping over features at leaf nodes to
calculate ¢; for each specific sample to be explained. In fact, what we just proposed is to trade space
complexity for time complexity. This should significantly save computational efforts when there exist
redundant computations of Up, ¢ across samples, which generally happens when M > 2P+1/D
(For each sample, around D/2 Up, ’s should be calculated for each path, thus on average M D /2
calculations should be taken for M samples). This commonly occurs in a moderate-sized dataset,
e.g., M > 22when D =6, M > 205 when D = 10, and M > 2341 when D = 14. We show the
appropriateness of trading space complexity for time complexity in practice in Section 3]

We split Fast TreeSHAP v2 algorithm into two parts: Fast TreeSHAP Prep and Fast TreeSHAP
Score. Fast TreeSHAP Prep (Algorithmin Appendix [A.6) calculates the sets {Up, ¢ : C C Dy}
for all Dy,’s in the tree, and Fast TreeSHAP Score (Algorithm[d]in Appendix calculates ¢;’s for
all samples to be explained based on the pre-computed {Up, ¢ : C C Dy }. The main output of Fast
TreeSHAP Prep is S, an L X 20 matrix where each row records the values in {Up,.c : C C Dy} for
one path Py. To calculate .S, similar to the original TreeSHAP and Fast TreeSHAP v1, both EXTEND
and UNWIND methods are used. The EXTEND method keeps track of {U.,, p,.c : m =0,---,|C|}
for all possible subsets C' C Dy, simultaneously, and the UNWIND method undoes a previous call to
EXTEND when duplicated features are encountered in the path. At the leaf node, Up, c is obtained
by summing up {U,, p,.c} across m for all possible subsets C' C D, simultaneously. In Fast
TreeSHAP Score, given a feature vector x, we need to find out its corresponding Sy, i.e., the feature
subset within path P, where each feature satisfies the thresholds along the path, and then extract the
corresponding value of Up, p,\s, and Up, p,\({itus,) for i € Dy\Sk from pre-computed S.

4.2.1 Complexity Analysis

In Fast TreeSHAP Prep, the time complexities of both EXTEND at the internal node and .S calculation
at the leaf node are bounded by O(2” D), where O(2”) comes from the number of possible subsets
within each path, and O(D) comes from the number of possible subset sizes. Thus the time complexity
is O(T L2P D) for the entire ensemble of T’ trees. Note that this time complexity is independent with
the number of samples to be explained, thus this entire part can be pre-computed, and matrix S can
be stored together with other tree properties to facilitate future SHAP value calculation. The space
complexity is dominated by S, which is O(L2%). Note that this complexity is for one tree. In practice,
there are two ways to achieve this complexity for ensemble of 7" trees: i). Sequentially calculate
S for each tree, and update SHAP values for all samples immediately after one S is calculated. ii).
Pre-calculate .S for all trees and store them in the local disk, and sequentially read each .S into memory
and update SHAP values for all samples accordingly.

In Fast TreeSHAP Score, it takes O(1) time at each internal node to figure out S, and O(D) time at
each leaf node to loop over each of the D features in the path to extract its corresponding value from
S (It takes O(1) time to look up in S). Therefore, the loops at the leaves dominate the complexity of
Fast TreeSHAP Score, which is O(D). Finally, the complexity is O(M T L D) for the entire ensemble
of T trees and M samples to be explained. Compared with O(MT LD?) complexity in the original
TreeSHAP and Fast TreeSHAP v1, this is a D-time improvement in computational complexity.

4.3 Fast TreeSHAP Summary

Table [I| summarizes the time and space complexities of each variant of TreeSHAP algorithm (M is
the number of samples to be explained, | N| is the number of features, 7" is the number of trees, L is
the maximum number of leaves in any tree, and D is the maximum depth of any tree).




Table 1: Summary of computational complexities of TreeSHAP algorithms.

TreeSHAP Version Time Complexity Space Complexity
Original TreeSHAP O(MTLD?) O(D?* + |NJ)
Fast TreeSHAP v1 O(MTLD?| D? +|NJ)

o(
Fast TreeSHAP v2 (general case) O(TL2PD + MTLD) O(L2P)
Fast TreeSHAP v2 (balanced trees) O(TL?D + MTLD)  O(L?)

T Average running time is reduced to 25% of original TreeSHAP.

Fast TreeSHAP v1 strictly outperforms original TreeSHAP in average running time and performs
comparably with original TreeSHAP in space allocation. Thus we recommend to at least replace
original TreeSHAP with Fast TreeSHAP v1 in any tree-based model interpretation use cases.

We consider two scenarios in model interpretation use cases to compare Fast TreeSHAP v1 and v2:

* One-time usage: We explain all the samples for once, which usually occurs in ad-hoc
model diagnosis. In this case, as mentioned in Section[4.2] Fast TreeSHAP v2 is preferred
when M > 2P+1 /D (commonly occurs in a moderate-sized dataset, as most tree-based
models produce trees with depth < 16). Also, Fast TreeSHAP v2 is under a stricter memory
constraint: O(L2P) < memory tolerance. For reference, for double type L x 2P matrix
S (assume in complete balanced trees, i.e., L = 20 its space allocation is 32KB for D = 6,
8MB for D = 10, and 2GB for D = 14. In practice, when D becomes larger, it becomes
harder to build a complete balanced tree, i.e., L will be much smaller than oD, leading to a
much smaller memory allocation than the theoretical upbound. We will see this in Section[5

* Multi-time usage: We have a stable model in the backend, and we receive new data to be
scored on a regular basis. This happens in most of the use cases of predictive modeling
in industry, where the model is trained in a monthly/yearly frequency but the scoring data
are generated in a daily/weekly frequency. One advantage of Fast TreeSHAP v2 is that it
is well-suited for this multi-time usage scenario. In Fast TreeSHAP v2, we only need to
calculate S once and store it in the local disk, and read it when new samples are coming,
which leads to D-time computational speedup over Fast TreeSHAP v1.

5 Evaluation

We train different sizes of random forest models for evaluation on a list of datasets in Table[2] with
the goal of evaluating a wide range of tree ensembles representative of different real-world settings.
While the first three datasets Adult [15], Superconductor [10], and Crop [13 [14] in Table Q] are
publicly available, we also include one LinkedIn internal dataset “Upsell” to better illustrate the
TreeSHAP implementation in industry. The Upsell dataset is used to predict how likely each LinkedIn
customer is to purchase more Recruiters products by using features including product usage, recruiter
activity, and company attributes. For each dataset, we fix the number of trees to be 100, and we train
a small, medium, large, and extra-large model variant by setting the maximum depth of trees to be 4,
8, 12, and 16 respectively. Other hyperparameters in the random forest are left as default. Summary
statistics for each model variant is listed in Table 5]in Appendix

Table 2: Datasets.

Name # Instances # Attributes # Attributes Task Classes
(Original) (One-Hot)

Adult[[15]] 48,842 14 64 Classification 2

Superconductor[10] 21,263 81 81 Regression -

Crop[ 13, [14] 325,834 174 174  Classification 7

Upsell 96,120 169 182 Classification 2

We compare the execution times of Fast TreeSHAP v1 and v2 against the existing TreeSHAP
implementation in the open source SHAP package (https://github.com/slundberg/shap). For
fair comparison, we directly modify the C file treeshap.h in SHAP package to incorporate both
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Table 3: TreeSHAP vs Fast TreeSHAP v1 vs Fast TreeSHAP v2 - 10,000 samples (s.d. in parathesis).

Model Original Fast Tree- Speedup Fast Tree- Speedup
TreeSHAP (s) SHAP vl (s) SHAP v2 (s)
Adult-Small 2.40 (0.03) 2.11 (0.02) 1.14 1.30 (0.04) 1.85
Adult-Med 61.04 (0.61) 44.09 (0.61) 1.38 26.62 (1.08) 2.29
Adult-Large 480.33 (3.60) 333.94 (4.20) 1.44 161.43 (3.95) 2.98
Adult-xLarge  1805.54 (13.75) 1225.20 (8.97) 147  827.62 (16.17) 2.18
Super-Small 2.50 (0.03) 2.04 (0.02) 1.23 1.28 (0.08) 1.95
Super-Med 89.93 (3.58) 60.04 (3.56) 1.50 35.65 (2.06) 2.52
Super-Large 1067.18 (10.52) 663.02 (5.79) 1.61 384.14 (4.78) 2.78
Super-xLarge  3776.44 (28.77) 2342.44 (35.23) 1.61 1988.48 (15.19) 1.90
Crop-Small 3.53(0.07) 2.90 (0.04) 1.22 3.15 (0.02) 1.12
Crop-Med 69.88 (0.71) 50.13 (0.91) 1.39 34.57 (1.49) 2.02
Crop-Large 315.27 (6.37) 216.05 (8.64) 1.46 130.66 (3.80) 241
Crop-xLarge 552.23 (10.37) 385.51 (8.48) 1.43 290.49 (3.19) 1.90
Upsell-Small 2.80 (0.04) 2.23 (0.05) 1.26 2.20 (0.06) 1.27
Upsell-Med 90.64 (4.59) 63.34 (1.82) 1.43 34.02 (0.93) 2.66
Upsell-Large 790.83 (5.79) 515.16 (1.66) 1.54 282.98 (4.89) 2.79
Upsell-xLarge 2265.82 (17.44) 1476.56 (4.20) 1.53 1166.98 (15.02) 1.94

Fast TreeSHAP v1 and v2. All the evaluations were run on a single core in Azure Virtual Machine
with size Standard_D8_v3 (8 cores and 32GB memory). We ran each evaluation on 10,000 samples.
In Table 3] results are averaged over 5 runs and standard deviations are also presented. To justify the
correctness of Fast TreeSHAP v1 and v2, in each run we also compare the calculated SHAP values
from Fast TreeSHAP v1 and v2 with SHAP values from the original TreeSHAP, and the maximal
element-wise difference we observed during the entire evaluation process is ~ 1073, which is most
likely the numerical error. We conduct pairwise comparisons between these three algorithms:

* Original TreeSHAP vs Fast TreeSHAP v1: For medium, large, and extra-large models, we
observe speedups consistently around 1.5x. We observe lower speedup (around 1.2x) for
small models probably due to the insufficient computation in computationally-expensive
parts. These speedups also seem much lower than the theoretical upper bound (~ 4)
discussed in Section[#.T} which is probably due to the existence of other tasks with slightly
lower computational complexity in the algorithm.

* Original TreeSHAP vs Fast TreeSHAP v2: For medium and large models, we observe
speedups around 2.5-3x, while the speedups drop to around 2x for extra-large models. This
is because the first step Fast TreeSHAP Prep in Fast TreeSHAP v2 takes much longer
time for larger models, and the execution time of Fast TreeSHAP v2 listed in TableE]is a
combination of its two steps. Later in this section, we will examine the execution times of
Fast TreeSHAP Prep and Fast TreeSHAP Score separately.

» Fast TreeSHAP vl vs Fast TreeSHAP v2: The speedups of Fast TreeSHAP v2 are consis-
tently higher than the speedups of Fast TreeSHAP v1 except for small models, showing
the effectiveness of Fast TreeSHAP v2 in improving the computational complexity. Their
comparable performance for small models is also due to the insufficient computation.

Table [] shows the execution times of Fast TreeSHAP Prep and Fast TreeSHAP Score in Fast
TreeSHAP v2. We see that the execution time of Fast TreeSHAP Prep is almost negligible for small
models, but increases dramatically when the model size increases. This coincides with our discussions
in Section [4.3| that for Fast TreeSHAP v2, a larger model needs a larger set of samples to offset the
computational cost in Fast TreeSHAP Prep. The column “Speedup” shows the ratios between the
execution times of Fast TreeSHAP Score and original TreeSHAP. For one-time usage scenarios, this
column approximates the speedup when sample size M is sufficiently large (i.e., Fast TreeSHAP
Score dominates the execution time of Fast TreeSHAP v2). For multi-time usage scenarios, this
column reflects the exact speedup when matrix S’ is pre-computed, and newly incoming samples are
being explained. Finally, the last column shows the space allocation of matrix .S which dominates



Table 4: Fast TreeSHAP v2: Fast TreeSHAP Prep & Fast TreeSHAP Score - 10,000 samples (s.d. in

parathesis).

Model Original Fast Tree- Fast Tree- Speedup Space Allo-

TreeSHAP (s) SHAP Prep (s) SHAP Score (s) (Large M) cation of S
Adult-Small 2.40 (0.03) <0.01 (<0.01) 1.30 (0.04) 1.85 2KB
Adult-Med 61.04 (0.61) 0.20 (0.01) 26.42 (1.07) 2.31 368KB
Adult-Large 480.33 (3.60) 11.32 (0.14) 150.11 (3.81) 3.20 24 9MB
Adult-xLarge  1805.54 (13.75) 268.90 (8.29) 558.72 (7.88) 3.23 955MB
Super-Small 2.50 (0.03) <0.01 (<0.01) 1.28 (0.08) 1.95 2KB
Super-Med 89.93 (3.58) 0.36 (0.01) 35.29 (2.05) 2.55 462KB
Super-Large 1067.18 (10.52) 30.30 (0.34) 353.84 (4.34) 3.02 45.2MB
Super-xLarge  3776.44 (28.77) 673.04 (8.35) 1315.44 (6.84) 2.87 1.76GB
Crop-Small 3.53 (0.07) <0.01 (<0.01) 3.15 (0.02) 1.12 2KB
Crop-Med 69.88 (0.71) 0.23 (0.01) 34.34 (1.48) 2.03 370KB
Crop-Large 315.27 (6.37) 8.08 (0.09) 122.58 (3.71) 2.57 15.1MB
Crop-xLarge 552.23 (10.37) 75.28 (2.34) 215.21 (2.02) 2.57 323MB
Upsell-Small 2.80 (0.04) <0.01 (<0.01) 2.20 (0.06) 1.27 2KB
Upsell-Med 90.64 (4.59) 0.33 (0.01) 33.69 (0.92) 2.69 452KB
Upsell-Large 790.83 (5.79) 24.59 (0.36) 258.39 (4.53) 3.06 33.7MB
Upsell-xLarge 2265.82 (17.44)  442.74 (14.26) 724.24 (7.89) 3.13 996MB

60 4 = TreeSHAP

—— Fast TreeSHAP v1
504 — Fast TreeSHAP v2

0 2000

4000 6000

8000

10000

5001 — TreesHAP

400

300 1

Time (s)

= Fast TreeSHAP v1
—— Fast TreeSHAP v2

0 2000

4000

6000

8000

10000

Number of Samples Number of Samples

Figure 1: Execution time v.s. number of samples. Left: Adult-Med, Right: Adult-Large.

the memory usage of Fast TreeSHAP V2E| We can see that, although Fast TreeSHAP v2 costs more
memory than the other two algorithms in theory, in practice, the memory constraint is quite loose
as all the space allocations in Table [] are not causing memory issues even in an ordinary laptop.
Actually, the maximum depth of trees in most tree-based models in industry do not exceed 16.

Figure [T plots the execution time versus number of samples for models Adult-Med and Adult-Large.
95% confidence interval of the execution time is also indicated by the shaded area. Here we consider
the one-time usage scenarios for a better performance showcase of the two steps in Fast TreeSHAP
v2. For Adult-Med, Fast TreeSHAP v2 almost starts at the same place as the other two algorithms,
since the first step Fast TreeSHAP Prep takes only 0.2s. For Adult-Large, Fast TreeSHAP Prep takes
much longer time due to the larger model size, resulting in higher starting point of the green curve.
However, the green curve immediately crosses the other two curves when the number of samples
exceeds 500, which coincides with our previous discussions on the sample size requirement of Fast
TreeSHAP v2. In both plots, Fast TreeSHAP v2 consistently performs the best while the original
TreeSHAP consistently performs the worst when the number of samples exceeds a certain threshold.

We also compare the performance of original TreeSHAP, Fast TreeSHAP v1 and Fast TreeSHAP v2
on varying number of trees in Section[A.8] We find that the execution time is approximately linear in

2Space allocation of S is calculated by #mazimumleaves - 2#marimum depth g B for double type entries.



terms of the number of trees for all the three approaches, which justifies the linear term of number of
trees in the theoretical complexity formulas in Table|l} We also find that the relative performance of
the three approaches is consistent with the number of trees. In addition to this comparison, we also
compare the performance of the three approaches on other types of tree-based models, e.g., XGBoost
[6] model in Section[A.9] Overall we see that Fast TreeSHAP v1 and v2 can still achieve ~1.5x and
~2.5-3x speedups over the original TreeSHAP on XGBoost model.

The above evaluations are all based on 100 trees, 10,000 samples, and 1 core for fast and fair
comparisons. In real life scenarios, the number of trees can be as large as several thousands, hundreds
of millions of samples can be encountered in model scoring, and multi-core machines can be used
to conduct parallel computing. As parallel computing is one of our future works, we just briefly
discuss the potential ways to parallelize Fast TreeSHAP v1 and v2 in Appendix[A.T10] Based on the
proposed ways of parallel computing, we can reasonably expect that both Fast TreeSHAP v1 and v2
are able to significantly improve the computational efficiency in real life scenarios (e.g., reducing the
execution time of explaining 20 million samples in a 100-core server from 15h to 5h, and reducing
the execution time of explaining 320 thousand samples in a 4-core laptop from 3.5h to 1.4h). More
details of the analysis of real life scenarios can be found in Appendix [A.TT]

6 Conclusion

TreeSHAP has been widely used for explaining tree-based models due to its desirable theoretical
properties and polynomial computational complexity. In this paper, we presented Fast TreeSHAP
v1 and Fast TreeSHAP v2, two new algorithms to further improve the computational efficiency of
TreeSHAP, with the emphasis on explaining samples with a large size. Specifically, Fast TreeSHAP
v1 shrinks the computational scope for the features along each path of the tree, which is able
to consistently improve the computational speed while maintaining the low memory cost. Fast
TreeSHAP v2 further splits part of computationally-expensive components into pre-computation step,
which significantly reduces the time complexity from O(MTLD?) to O(TL2” D + MTLD) with
a small sacrifice on memory cost, and is well-suited for multi-time model explanation scenarios. We
note that in practice, the computational advantage of Fast TreeSHAP v2 is achieved for sufficiently
large value of M (number of samples), and in the meantime D (maximum depth of tree) should be
upper-bounded according to the memory constraint.

As one of our future works, we are currently working on implementing the parallel computation in
Fast TreeSHAP v1 and v2. Another future direction of Fast TreeSHAP is to implement it in Spark
which naturally fits the environment of Hadoop clusters and the datasets stored in HDFS.
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A Appendix

A.1 Link to Code Repository

Here is the link to the code repository to replicate the results in Section[5} https://drive.google|
com/drive/u/4/folders/1POVOVj42K04QcT39wmbMM4Y6joyc67ZQ.

A.2  Algorithm Details of Estimating fs(z)

Algorithmproposed in [19}[18]) provides the details to calculate fg(z) for tree-based models. Here a
tree is specified as {v, a, b, t, r, d}, where v is a vector of node values, which takes the value internal
for internal nodesé The vectors a and b represent the left and right node indexes for each internal
node. The vector ¢ contains the thresholds for each internal node, and d is a vector of indexes of the
features used for splitting in internal nodes. The vector r represents the cover of each node (i.e., how
many data samples fall in that node from its parent).

Algorithm 1 Estimating fs(x)
procedure EXPVALUE(z, S, tree = {v,a, b, t,r,d})
return G(1) > Start recursion at the root node
end procedure
procedure G(j)

if v; # internal then > Check if node j is a leaf
return v; > Return the leaf’s value
else
ifd; € S then > Check if the split feature is in S
return G(a;) if z4; < t; else G(b;) > Use value of child on the decision path
else
return G(a;)rq,; /rj + G(bj)ry, /T; > Weight values of both children by coverage
end if
end if

end procedure

A.3 Proof of Theorem 1

Proof. Plugging in fs(x) = Zle Wi, svy, into Equationleads to the SHAP value

SININ| = [S] — 1)! &
¢i = Z 151 ||N|' b Z(Wk,su{i} — Wk, s)V%-
SCN\{i} ’ k=1

It is easy to see that Wy, gy = Wi,s if i ¢ Dy (i.e., Vj € Py, d; # 4). Therefore, the above
equation can be simplified as

[SIANT = 15T = 1)!
V]!

Z (Wi, sugiy — Wh,s)vk
ki€ Dy

¢ =

SCN\{i}

SI(N| —|S| - 1)!
YD [SIMIN] — 15| )(Wk,sw}—wk,s) o

: ‘ IN]!
k:i€Dy [ SCN\{:}

3A node in a tree can be either an internal node or a leaf node.
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Similarly, VI ¢ Dy where [ # i, V.S C N\{4,1}, we have Wy, suiy = Wi sugiy and Wi, suqy =
Wk:}S’, thus Wk,SU{i,l} — Wk,SU{l} = Wk,SU{i} — Wk,S’- Therefore, Vi ¢ Dk,

b= S 1 % |S|!(|N|_‘S|_1)!(Wk,su{i}*Wk,S)

: , NI
k€D SCN\{%,l}

S|+ DI(|N]| = [S!
+ Z (15 )](\lq,' 5D (Wi, suginy — We,sugy) vk
SCN\{i,l} ’
ISEANT =S| =Dt (ST +DUINT = |S]!
- Z Z ( |N|! + |N|! (Wk,Su{i} —Wk,s) Vk

k:i€Dy | SCN\{i,l}

S|I(|N| =S| —2)!
= Z Z 15 (J\|/—| _‘ 1)! (Wk,sugiy — Wh.s) | vk
k:i€Dy | SCN\{4,1} ’

We repeat the above process | N| — |Dy| times for each k, each time on a feature [ ¢ Dy, and we
finally have

(1Dg| — S| — 1)!
¢i = Z Z ISE(D = 15] = 1 (W,sugiy — Wh.s) | vk

k€D | S j | Di !
€Dk | SCDx\{i}

Plugging in Wi.s = [;cp, a,es 1{d; € Trj} - [1jep, a,¢s Lirj into the above equation, we have

¢i = Z [ Z |S|'(|DkD_k||[S| — 1)'( H 1{$d_7 € Tkj} H Ry;

ki€Dy SCDy\{i} JEPy,d; €SU{i} JEPs,d; €D \(SU{i})
— H ]].{l’d]. c Tkj} H Rkj)}’l)k
jEPk,djES jEPk,djEDk\S
|[S|!(| Dx| — |S] = 1)!
= Z [ Z Dr! ( H ]l{xdj ETkj} H Rkj)
ki€Dy SCDi\{i} ’ JjEPk,d;€S JEPy,d; €D\ (SU{i})
( II Heqeyt— JI  Re)low
JEPy,dj=i JEPydj=i
|Dy|-1

m!(|Dg| —m — 1)!
=> | X . k||Dk|! ) > [T 1wa, €T} II

k:i€ Dy, m=0

H ]]-{xdj € Tkj} - H Rkj V-

jEPd;=i JEPe.d;=i

A.4 Proof of Theorem 2

Proof. Let Sy; := {dj : j € Px,xa; ¢ Tkj,dj # i}, i.e., Sk; is the subset of Dy \{i} where the
features in S; do not satisfy the thresholds along the path P;. Note that ] jEPyd;ES ]l{mdj €
Ty;} = 0if SN Sk # 0 and Hjepk)djes 1{za, € Tkj} = 1 otherwise, Equationcan then be
simplified as

|Dr|—1—|Skil m(|Dy| —m — 1)!
=3 | % - > n - n
k:i€Dy m=0 SCDr\({i}USki),|S|=m j€Py,d; €D\ (SU{i}USk;)
II Bu | I] YeaweTwt— [[ Bui)os
JEPy,d; €Sk JEPy,dj=i JEPy,dj=i
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Le., only subsets S C Dy \({i} U Si;) are necessary to be included in the equation.

Remind that S = {d; : j € Py, xq, ¢ Ti;}, ie, Sp is the subset of D) where

the features in S, do not satisfy the thresholds along the path P,. Also remind that
m!(|Dg|—m)!
Un.py.c = (\(}Dkk\Ll)l) >osceysi=m Ujep, a,ecns Bri» m = 0,-+-,|C|, and Up, ¢ :=

ZITYCL'LO %Uka,Ca where C' C Dy, is a subset of Dj,.

Then it is easy to see that when HjGPk,dj:i {zq, € Tyj} = 0(i.e.,i € Sk), we have Sp;U{i} = Sy,
and

Dy |—|Sk
D ol I i > 0 n
k€D, | m=0 kI SCD\Sk,|S|=m j€Py,d; €Dy \(SUSH)
I Bsl- 1T Ry)w
JEPy,d;j €Ski JEP,,dj=1
[1D%]=1S|
B |D| + 1 U R
= E : E : ‘D |_m m, Dy, D\ Sk H kjVk
kieDy | m=0 k JEP,,d; €Sk
= § : UDk,Dk\Sk H Rkj Vk-
k:i€Dy, L JEPy,d; €Sk

When HjePk,dj:i {zq; € Tyj} = 1(.e.,i & Sk), we have Sy; = Sy, and

|Dk|—1—|Sk|

m!(|Dg| —m — 1)!
4= 2 2 : k||l)k|! : D I1 Bis

k:i€Dy, m=0 SCDr\({i}USk),|S|=m j€ Py ,d; € Di\(SU{i}US})

H Rk-j 1-— H Rkj Vk

jePk,djESk JEP,dj=i
[1D1|—1-1S%]
|Dg| +1
- Z Z |Dy| — mUmaDk»Dk\({i}USk) H Ry; | 1- H Ry | vk
k€D, | m=0 k JEPi,d; €Sk J€Px.dj=i

= > |Uneoonaiusy 11 Bu(—= I RBe)| o

ki€ Dy L jGPk,deSk j€Pk,d_7':i

A.5 Fast TreeSHAP vl Algorithm Details

In Algorithm 2] m is the path of unique features we have split on so far, and contains three attributes
(We use the dot notation to access member Valuesﬂ i) m;41.d, the feature index for the jth internal
node (i.e., d;), ii) m;41.2, the covering ratio for the jth internal node (i.e., Ry;), iii) m; 1.0, the
threshold condition for the jth internal node (i.e., 1{zq, € Tx;}) (mo.d, mg.z, mg.o record the
information of a dummy node). Moreover, at the jth internal node, w is used to record U, p, ;D\ 51,
(m=0,---,7 — |Sk;) where Dy; and S; are subsets of Dy, and Sy, up to the jth internal node,
and q is used to record Hz € Py di€Sh; Ry, where Py; is the subpath of Py up to the jth internal node.

When reaching the leaf node, m will reach length | Dy, | 4 1, w will reach length | Dy | — |Sk| + 1 and ¢
is always a scalar. The values p., p,, and p; represent the covering ratio, the threshold condition, and
the feature index of the last split. One thing to note is that the functionality of EXTEND in Algorithm
[2)is slightly different from what we described in Section[d.1] where in addition to its functionality
described in Section 4.1 when we encounter a feature not in Sy, EXTEND is also called when we
encounter a feature in S, to simply update the Shapley weights.

*We use the same notation as in the original TreeSHAP algorithm for easy reference.
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Algorithm 2 Fast TreeSHAP v1

procedure TREESHAP(z, tree = {v,a, b, t,r,d})
¢ = array of len(x) zeros
RECURSE(0, [],[],1,1,1,-1) > Start recursion at the root node
return ¢
end procedure
procedure RECURSE(j, m, w, ¢, p=, po, i)
m,w,q = EXTEND(m,w, q, ., Po, Di) > Update m, w, ¢ for the feature of the last split
if v; # internal then > Check if we are at a leaf node
if len(m) > len(w) then
5o = —sum(UNWIND(m,w, g, —1)[1]) > Pre-calculate Up, p,\s, for d;’sin Sy
end if
for i + 1tolen(m) —1do
if m;.0 = 0 then
Omd = Pmid + S0 ¢ Vj > Update contribution for feature d; € Sy,
else
s = sum(UNWIND(m,w, q,i)[1]) > Calculate Up, p,\({d,yus,) for di & S
Gmid = Pm;.a+s-q- (1 —m;.z) - v; > Update contribution for feature d; ¢ S,
end if
end for
else
h,c= (aj,b;)if zq; < t; else (b, a;) > Determine hot and cold children
by =10 =1
k = FINDFIRST(m.d, d;)
if & # nothing then > Undo previous update for feature dy, if we see this feature again
lyylo = Mk.2, Mk.0
m,w,q = UNWIND(m, w, g, k)
end if
RECURSE(h, m,w, q, 1,7/, 40, d;)
RECURSE(c, m, w, q,4.7./7;,0,d;)
end if
end procedure
procedure EXTEND(m, w, q, ., Po, Di) > Update m, w, q for the feature of the last split
1, =len(m),len(w)
m, w = copy(m), copy(w)

my.(d, z,0) = (pi, Pz, Po) > Extend m given the feature of the last split
if p, = O then
q=4q- Pz

fori <[, —1to0Odo
w; = W * (l—l)/(l+1)
end for
else
wy, =1ifl, =0else 0 > Extend w if the feature of the last split is not in Sk
fori <« [, —1to0do
Wig1 = Wip1 +w; - (1 +1)/(1+1)
wi=p, w;-(l—14)/(l+1)
end for
end if
return m,w, q
end procedure
procedure UNWIND(m, w, q, %) > Undo previous update for feature d;
l,l, =len(m) — 1,len(w) — 1
m = copy(mo....—1
if 7 < 0 then
w = copy(w)
for j < 1, to 0 do

wj = w; - (L+1)/( =)

16



end for

else
if m;.0 = 0 then
w = copy(w)
for j «+ 1, to O do
w; = w; - (1+ 1)/~ )
end for
q=q/m;.z
else
n=uwy,
w = copy(wo...t,,—1) > Shrink w if feature d; ¢ Sy
for j < 1, —1to0do
t= ’LUj
wy=n- (14 1)/(+1)
end for
end if
for j < itol —1do
m;.(d, z,0) = mjy1.(d, z,0) > Shrink m given feature d;
end for
end if

return m,w, q
end procedure

A.6 Fast TreeSHAP v2 Algorithm Details

In Algorithm [3|and |4} S is a matrix of size L x 2 where each row records the values in the set
{Up,,.c : C C Dy} for one path Pj, and the subsets C' in each row are ordered according to the
reverse ordering of binary digits W is a matrix of size 2° x (D + 1), where each row corresponds
to a subset C' C Dy, ordered according to the reverse ordering of binary digits. At the jth internal
node along path Py, each row of W records {U,, p,;,c : m = 0,---,|C|} for a subset C C Dy;
where Dy, is the subset of Dy, up to the jth internal node. It is easy to see that at the leaf node of
path Py, summing up each row of W exactly matches one row in S corresponding to path P. [,, is
a vector of size 2” which records the number of nonzero elements in each row of . e is a vector
of the same size as d, which records the node indices of duplicated features along the path. c is an
integer which records the number of paths explored so far.

Algorithm 3 Fast TreeSHAP v2: Prep

procedure TREESHAPPREP(tree = {v,a,b,t,r,d})
S = matrix of L x 2P zeros
e = array of len(d) negative ones
W = matrix of 2P x (D + 1) zeros
l., = array of 2P zeros
c=0
RECURSE(0, [], W, L, 1, —1) > Start recursion at the root node
return S, e
end procedure
procedure RECURSE(j, m, W, 1, 0., p;)
m, W, l, = EXTEND(m, W, l,,p.,p;) > Update m, W, 1, for the feature of the last split

if v; # internal then > Check if we are at a leaf node
l=len(m)—1
fort <+ 0to2! —1do > Calculate {Up, ¢ : C C Dy} for the current path

for i < [,,[t] to 0 do
Sle,t] = Se, t] + Wty i) - (1+1)/(1 — i)
end for
end for

SE.g., in a 3-element set, using 0/1 to indicate absence/presence of an element, the subsets in reverse ordering
of binary digits are {(0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1)}.
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c=c+1
else
i, =1
k = FINDFIRST(m.d, d;)
if & # nothing then

e; =k > Record node index of duplicated feature
iy =Mg.2
m, W, l,, = UNWIND(m, W, l,,, k) > Undo previous update for dy, if we see it again
end if
lw=1,+1

RECURSE(a;, m, W, ly,i.7a; /7, d})
RECURSE(b;, m, W, ly, .1, /75, d;)
end if
end procedure
procedure EXTEND(m, W, L, p., pi) > Update m, W, [,, for the feature of the last split
[ =len(m)
m = copy(m)
my.(d, z) = (pi, p=) > Extend m given the feature of the last split
if [ = 0 then
wi0,0] =1
else > Extend W, [,, given the feature of the last split
w, by = COpy(W)v Copy(l’w)
W21 28] = copy(W: 21711])
Lu[271 2 21 = copy(ly[: 2'71))
fort «— 0to2!"' — 1do
for i < [,[t] —1to0do
end for
end for
fort < 271 t02! —1do
for i < [,[t] —1to0do
Wlti+ 1] =Wt e+ 1]+ Wit i - (i + 1)/ +1)
Wit = p. - Wikl - (=) /(1 + 1)
end for
end for
Lo[: 27 = 1,[: 271 =1
end if
return m, W, [,,
end procedure
procedure UNWIND(m, W, [, ) > Undo previous update for feature d;
l=len(m)—1
m, W, 1, = copy(mo....—1), copy(W), copy(l,)
ind = empty array
for t; «+ {0,2¢,2.2¢3.2¢ ... 20 —2il do
for ¢ty <+ titot; + 2i-1 _ 1do

ind.append(ts)
end for
end for
W[: 2171, :] = Wlind, ] > Shrink W, [,, given feature d;

Lol: 2171 = L, [ind)
fort < 0to 2" —1do
for i < 1,,[t] to 0 do
Wit,i] = WTt,i] - (1 +1)/(1 —1)

end for
end for
for j «— itol—1do

m;.(d, z) = mjq1.(d, 2) > Shrink m given feature d;
end for
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return m, W, [,,
end procedure

Algorithm 4 Fast TreeSHAP v2: Score

procedure TREESHAPSCORE(z, tree = {v,a,b,t,r,d, S, e})
¢ = array of len(x) zeros
b = array of [0, 1,2,22, ... ,2P]
c=0
RECURSE(0, [],1,1,1,-1) > Start recursion at the root node
return ¢
end procedure
procedure RECURSE(]a m, q, Pz, Po pl)

I =len(m)
m = copy(m)
my.(d, z,0) = (pi, Pz, Po) > Update m, ¢ for the feature of the last split
if p, = 0 then
q=4q-pz
end if
if v; # internal then > Check if we are at a leaf node
bsum =0
for i + 1toldo > Use bgym to search in {Up, ¢ : C C Dy} for the current path
bsum = bsum + b; if m;.0 7& 0
end for
fori < 1toldo
if m;.0 = 0 then > Update contribution for feature d; € S
¢mi.d = ¢de - S[C» bsum] “q -5
else > Update contribution for feature d; ¢ Sk
¢mi.d = ¢mbd + S[C, bsum - bz] q- (1 - mi-z) Uy
end if
end for
c=c+1
else
i, =1,=1
k = ej
if £ # —1 then > Undo previous update for feature dy, if we see this feature again

lyylo = Mk.2, M.0
m = copy(mo....—1)
for j <« ktol—1do
m;j.(d, z,0) = mjy1.(d, z,0)
end for
if i, = 0 then
q=q/i.
end if
end if
RECURSE(a;, m,q,%:7a, /7,00 - 1(wq; < t5),d;)
RECURSE(b;, m, q,i.m, /7j,10 - 1(xq, > t;),d;)
end if
end procedure

A.7 Additional Tables in Evaluation

Table 3] lists the summary statistics for each model variant used in the evaluation study. We fix the
number of trees to be 100, since the computational time is approximately linear in terms of the
number of trees, therefore without loss of generalizability, we simply set the number of trees to be a
fixed number.
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Table 5: Models.

Model # Trees Max Depth # Leaves
Adult-Small 100 4 1,549
Adult-Med 100 8 14,004
Adult-Large 100 12 57,913
Adult-xLarge 100 16 140,653
Super-Small 100 4 1,558
Super-Med 100 8 19,691
Super-Large 100 12 124,311
Super-xLarge 100 16 314,763
Crop-Small 100 4 1,587
Crop-Med 100 8 13,977
Crop-Large 100 12 37,503
Crop-xLarge 100 16 51,195
Upsell-Small 100 4 1,600
Upsell-Med 100 8 20,247
Upsell-Large 100 12 92,101
Upsell-xLarge 100 16 181,670
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Figure 2: Execution time v.s. number of trees. Left: Adult-Med, Right: Adult-Large.

A.8 Evaluation on Varying Number of Trees

We compare the performance of original TreeSHAP, Fast TreeSHAP v1 and Fast TreeSHAP v2
on varying number of trees. Figure [2] plots the execution time versus number of trees for models
Adult-Med and Adult-Large. 95% confidence interval of the execution time is also indicated by the
shaded area. We find that in both plots, the execution time is approximately linear in terms of the
number of trees for all the three approaches, which justifies the theoretical complexity formulas in
Table[T] We also find that the relative performance of the three approaches is consistent with the
number of trees, where Fast TreeSHAP v2 consistently performs the best, while original TreeSHAP
consistently performs the worst.

A.9 Evaluation on XGBoost Model

We compare the performance of original TreeSHAP, Fast TreeSHAP v1 and Fast TreeSHAP v2 on
XGBoost [[6] models trained on datasets Adult [15] and Superconductor [[10]. For fair comparison,
all the evaluations were run on a single core in Azure Virtual Machine with size Standard_D8_v3 (8
cores and 32GB memory). We construct Table[6] [7} and[8]in the same format of Table [5] [3] and [4]
Overall we see that Fast TreeSHAP v1 and v2 can still achieve ~1.5x and ~2.5-3x speedups than
original TreeSHAP.
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Table 6: Models.

Model # Trees Max Depth # Leaves
Adult-Small 100 4 1,480
Adult-Med 100 8 7,375
Adult-Large 100 12 21,085
Adult-xLarge 100 16 36,287
Super-Small 100 4 1,512
Super-Med 100 8 12,802
Super-Large 100 12 47,840
Super-xLarge 100 16 108,010

Table 7: TreeSHAP vs Fast TreeSHAP v1 vs Fast TreeSHAP v2 - 10,000 samples (s.d. in parathesis).

Model Original Fast Tree- Speedup Fast Tree- Speedup
TreeSHAP (s) SHAP vl (s) SHAP v2 (s)
Adult-Small 2.03 (0.05) 1.92 (0.05) 1.06 0.85 (0.01) 2.39
Adult-Med 23.61 (0.11)  18.83(0.14) 1.25 7.65 (0.07) 3.09
Adult-Large 113.77 (0.44)  83.58 (0.55) 1.36  36.98 (0.19) 3.08
Adult-xLarge  256.32 (1.24) 183.07 (1.65) 1.40  78.02(0.33) 3.29
Super-Small 2.61 (0.10) 2.42 (0.10) 1.08 1.12 (0.06) 2.33
Super-Med 47.00 (1.64)  33.68 (0.22) 140 17.45(0.12) 2.69
Super-Large  334.28 (12.46) 221.38 (2.63) 1.51 105.85(2.71) 3.16
Super-xLarge  1124.07 (4.50) 720.21 (7.84) 1.56 445.49 (5.03) 2.52

A.10 Fast TreeSHAP Parallelization

Parallel computing is not the main topic of this paper and will be one of our future works. Here
we just briefly discuss the potential ways to parallelize Fast TreeSHAP v1 and v2 to achieve an
even higher computational speed. Fast TreeSHAP v1 can be parallelized per sample, similar to the
parallelization setting in the original TreeSHAP. The parallelization setting for Fast TreeSHAP v2 is
a bit complicated: For one-time usage, per-tree parallelization is recommended as long as the total
memory cost across multiple threads (i.e., #thread - O(L2P)) fits the entire memory, which works
for most moderate-sized trees. For multi-time usage or when per-tree parallelization is not applicable,
we can pre-compute S’s for all trees and store them in the local disk, and read them when explaining
the samples. In this case, per-sample parallelization can be implemented. Specifically, we can read
these S’s in batches with size B which leads to O(BL2”) memory cost. When the corresponding
tree size is small, we can increase the batch size to potentially reduce the overheads in data loading.
When the tree size is large, we can decrease the batch size until it fits the memory well. Once a batch
of S’s have been loaded into memory, we can implement per-sample parallelization to update SHAP
values for all samples for this batch of trees.

A.11 Analysis of Real Life Scenarios

The evaluation studies in Sectionﬁ] are all based on 100 trees, 10,000 samples, and 1 core for fast and
fair comparisons. In real life scenarios in industry, the number of trees is usually between 200 and
1000, hundreds of millions of samples can be encountered in model scoring, and multi-core machines
can be used to conduct parallel computing. Based on the discussions in Section[A.T0|and the linear
patterns in Figure [, we can reasonably expect the linear scaling of the performance of the three
TreeSHAP algorithms with respect to the number of trees, the number of samples, and the number of
threads in parallel computing. Here we list two real life scenarios and estimate the improvement of
Fast TreeSHAP v1 and v2 over the original TreeSHAP (The estimates may not be very accurate, and
they are mostly used to provide an intuitive view of the magnitude of problems and the improvement
of proposed approaches):

* In the prediction of Premium subscriptions of LinkedIn members, 20 million LinkedIn
members need to be scored every week. The model we have built is a random forest model
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Table 8: Fast TreeSHAP v2: Fast TreeSHAP Prep & Fast TreeSHAP Score - 10,000 samples (s.d. in

parathesis).

Model Original Fast Tree- Fast Tree- Speedup Space Allo-

TreeSHAP (s) SHAP Prep (s) SHAP Score (s) (Large M) cation of S
Adult-Small 2.03 (0.05) <0.01 (<0.01) 0.85 (0.01) 2.39 2KB
Adult-Med 23.61 (0.11) 0.05 (<0.01) 7.60 (0.07) 3.11 258KB
Adult-Large 113.77 (0.44) 1.03 (0.02) 35.95 (0.19) 3.16 14.2MB
Adult-xLarge  256.32 (1.24) 6.76 (0.08) 71.26 (0.33) 3.60 421MB
Super-Small 2.61 (0.10) <0.01 (<0.01) 1.12 (0.06) 2.33 2KB
Super-Med 47.00 (1.64) 0.15 (0.01) 17.30 (0.12) 2.72 392KB
Super-Large  334.28 (12.46) 7.42 (0.06) 98.43 (2.71) 3.40 27.7MB
Super-xLarge 1124.07 (4.50) 147.00 (3.87) 298.49 (5.03) 3.77 936MB

which is refreshed every half a year. This model contains 400 trees with the maximum depth
of 12. Assume we are using a server with 100 cores. We can reasonably approximate from
Table [3| that the execution time of explaining the entire 20 million samples by using the
original TreeSHAP is about 660 x 4 x 2000/100s = 14.7h (we use the average execution
time of the large models across 4 datasets) even with parallel computing on 100 cores. This
computational cost is much higher than the model scoring itself! We propose using Fast
TreeSHAP v2 as this is the multi-time usage scenario, where matrix .S can be pre-computed
and stored in the server. From Table[d] we can reasonably estimate that the matrix S occupies
about 400 x 30MB=12GB in storage (store all 400 trees together), and 30MB in memory
(read each tree sequentially) when running Fast TreeSHAP v2, which should well fit the
industry-level server. We can also estimate from Table [ that Fast TreeSHAP v2 provides
~ 3x speedup compared with the original TreeSHAP, which reduces the execution time of
model interpretation from 14.7h to just 4.9h.

In the crop mapping prediction [[13] [14], 320 thousand remote sensing images need to
be scored on a 4-core laptop. The model we have built is similar to the model used in
Section[5} a random forest model with 500 trees and maximum depth of 12. From Table
it is reasonable to estimate that the execution time of the original TreeSHAP is about
315 x 32 x 5/4s = 3.5h when parallelizing on the entire 4 cores. Fast TreeSHAP v1 can
help reduce the execution time to 216 x 32 x 5/4s = 2.4h. Since this is the one-time
usage scenario, per-tree parallelization can be implemented for Fast TreeSHAP v2, which
costs around 15 x 4MB = 60MB in memory, and can further reduce the execution time to
130 x 32 x 5/4s = 1.4h.
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