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Abstract

Monolithic deep learning models are typically not interpretable, and not easily
transferable. They also require large amounts of data for training the millions of
parameters. Alternatively, modular neural networks (MNN) have been known to
solve these very issues of monolithic neural networks. However, to date, research
in MNN architectures has concentrated on their performance and not on their
interpretability. We would like to address this gap in research in MNN architectures,
specifically in the gated modular neural network architectures (GMNN). Intuitively,
GMNN could inherently be more interpretable since the gate can learn insightful
problem decomposition, individual modules can learn simpler functions appropriate
to the decomposition and errors can be attributed either to gating or to individual
modules thereby providing either a gate level or module level diagnosis. Wouldn’t
that be nice? But is this really the case? In this paper we empirically analyze
what each module and gate in a GMNN learns and show that (1) GMNNs can
indeed be interpretable, but (2) current GMNN architectures and training methods
do not necessarily guarantee an interpretable and transferable task decomposition.
Experiments are performed on a simple generated, MNIST and FashionMNIST
datasets to show that the current architectures fail to perform good interpretable task
decompositions even on simple datasets. The code for all the experiments in this
paper is at: https://github.com/yamsgithub/modular_deep_learning/
tree/xai_neurips_2021.

1 Introduction

There is skepticism about the reliability, fairness, explainability and interpretability of deep learned
models. In her book, Weapons of Math Destruction [16], author Cathy O’Neil explains the disastrous
and unfair fallout of using black box models which provide no insight into their decisions. Monolithic
deep neural architectures create black box models with less interpretable results and do not facilitate
transfer of knowledge.

This naturally led me to look into modular neural network (MNN) architectures. There are different
MNN architectures [11, 20, 3]. Gated modular neural networks (GMNN) are currently the most
successful MNNs. They consist of a set of simple individual neural network modules (no shared
weights) that are trained along with another simple neural network that works as a gate or soft-switch.
The gate determines which module should be used for each data sample. There are various methods
for combining and training the modules and the gate. Usually the gate and the modules are trained on
the same input data samples but this is not necessary.

Research in this area dates back at least 2 decades and has demonstrated the potential advantages of
GMNNs: (1) learn subtasks with much smaller networks and hence parameters [19]; (2) requires less
data to train the smaller networks; (3) learnt subtasks could be applied across different complex tasks
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enabling transfer learning [15]; (4) possibility of easier parallelization and distributed computation
[18, 19]; (5) leverage domain knowledge [17]; (6) Multitask learning [9].

However, the research so far has concentrated on the overall performance of the GMNN and not
on its potential to be interpretable. GMNNs can be inherently more interpretable since: (1) the
modules and gate are simpler networks that can be debugged and explained more easily than a
monolithic network; (2) the gate decomposition of the task between the modules could facilitate data
driven error attribution to either the gate or the modules and the modules would be better suited for
transferability. But is this really the case? None of the earlier work in GMNNs clearly address this
question by delving into what the individual modules learn and how the problems are decomposed
among the modules by the different architectures and methods of training, a detail that is essential for
understanding the interpretability of GMNNs. In this paper we attempt to bridge this gap in GMNN
research.

Explainability and interpretability in deep learning is an active area of research [22]. There is still little
consensus on what interpretability is and how to evaluate it for benchmarking [4, 13]. In our work
we define interpretability as the data driven ability to attribute errors for debugging. With GMNN
this could ideally be achieved by: (1) the gating network learning a meaningful decomposition of the
input space into regions with natural ’rules’. For example, for a classification task the gate would use
different modules to predict different classes; or (2) each module learns non-intersecting functions or
subsets of the task which implicitly satisfies case (1). Such a task decomposition would enable error
attribution either to gating or to individual modules based on the input samples.

In this paper we use the Mixture of Experts (MoE) architecture (Section 3 gives an overview of the
MoE architecture), which is the most commonly used GMNN architecture. In the MoE architecture
the modules are called experts. We use this arechitecture to perform empirical analysis of what
the modules and gate learn to address the following questions, the answers to which can provide an
insight into the potential of interpretability and transferabilty of the GMNNs:

1. How are tasks divided into sub tasks by the gate in the MoE architecture?

2. Does the gate decomposition of the task among the experts guarantee interpretability?

3. Does an interpretable task decomposition actually exist and can the gate learn it?

4. What are the pathological cases of task decomposition?

The main contributions of our paper are: (1) a detailed empirical analysis of what the experts and gate
in MoE architectures learn. To the best of our knowledge, there is no such prior work; and (2) findings
that (a) MoE architectures can indeed be interpretable; (b) however, not all MoE architectures are
inherently interpretable; and (c) the existing MoE architectures and their methods of training cannot
guarantee a problem decomposition that is either interpretable or transferable and hence, further work
is required in this area.

The paper is structured as follows: Section 2 discusses related work; Section 3 gives an overview
of the MoE architectures and training methods that we have used in our experiments; Sections 4 - 6
analyze what the modules and gate in the MoE architectures learn, how the task is decomposed by
the gate among the modules, and assess the interpretability of these task decompositions; Section 7
discusses the pathalogical cases of task decompositons in GMNNs; we conclude with discussions in
Section 8; and our furture work in Section 9.

2 Related Work

Interpretable and explainable deep learning is an active area of research. Xie et. al. [22] have recently
nicely summarized the state-of-the-art in explainable deep learning research. They review different
topics of explainability, such as, understanding the learning mechanism, model debugging, adversarial
attack and defense, and fairness and bias in deep neural networks. Their survey shows that there is no
significant work leveraging the inherent interpretability in modular neural networks.

In our work we are most interested in data driven error attribution for model debugging, that is,
attributing the mislabeled errors to the part of the model that needs to be improved. This is more
natural in modular neural networks where you can attribute the errors to either the gate or individual
modules that can be further improved. Existing model debugging methods, such as: ModelTracker [2]
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provides a model agnostic tool to debug errors like mislabeled data or inadequate features, Alain et.
al. [1] build linear classifiers, from the representations of the intermediate layers, to assess the quality
of the representations to predict the labels, and neural stethoscopes [5] which analyses the deep
neural network learning and the factors that influence it by promoting or suppressing information. It
uses a 2 layer perceptron branch to do this. Hence, we see that existing methods use additional tools
and mechanisms for debugging while modular networks could inherently provide this feature.

To the best of our knowledege there is no existing work that delves into the potential for interpretability
in GMNNs. [10, 17] mention briefly that the MoE architecture can be interpretable but do not provide
substantial evidence for it.

3 Mixture of Experts Overview

Mixture of Experts (MoE) is the simplest of the wider class of GMNN architectures, introduced by
Jacobs et. al in [7, 6], where data-flow is dynamically configured according to the input. MoE refers
to the modules as experts. Different MoE architectures can be realized by different combinations
of expert outputs mediated by the gate with different loss functions. Four of these architectures are
presented here.

Figure 1: Mixture of Experts (MoE) architecture

3.1 Expectation Model

Jacobs et. al. [7] introduced the architecture in Figure 1 where the expert networks compete to
learn the training patterns, and the gating network mediates this competition. After training, expert
networks 1, 2 and 3 compute different functions that are useful in different regions of the input space.
Let the vectors o⃗1, o⃗2 and o⃗3 denote the outputs of the three expert networks. The gating network
decides whether expert 1, 2 or 3 is currently applicable. Scalars pl, p2 and p3 denote the 3 output
units of the gating network. In general, the architecture may contain any number of expert networks.
If there are n expert networks, then the gating network has n output units. The output of the entire
architecture, y⃗, is the expected sum of the outputs of the individual experts, y⃗ =

∑n
i=1 pio⃗i, and

the loss L is L = [d −
∑n

i=1 pioi]
2, where d is the desired output. Since the output is a sum of

proportions of the outputs of the experts, the experts are tightly coupled. Change in weights of one
expert changes the residual error and hence affects the weights of all other experts.
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3.2 Pre-softmax Model

We designed another architecture which is the same as Figure 1 but where the gate smoothly combines
the outputs of each expert network before applying the softmax and then applying the softmax to
the combined output, y⃗ = softmax(

∑n
i=1 pioi). The loss L in this case is the negative log loss

L = −1/N
∑N

i=1 di log(p(y⃗ = di)).

3.3 Stochastic Model

In their subsequent work, Jacobs et. al. [6], introduced a gate network that makes a stochastic decision
of which expert output should be selected. The output of the entire architecture, y⃗ is therefore one
of o⃗1 to o⃗n expert outputs sampled according to the distribution learnt by the gate network. The
expected loss L is then the expected sum of the loss of each expert, L =

∑n
i=1 pi[d− o⃗i]

2. Notice
that in this loss function, each expert is required to produce the whole of the output vector rather than
a residual. As a result, the goal of a local expert on a given training case is not directly affected by
the weights within other local experts.

3.4 Hierarchical and Multilevel Models

Some problems require multi-level architectures. Jordan et. al.[8] proposed a hierarchical mixture
of experts, in which the experts and gate are generalized linear models. Learning is treated as a
maximum likelihood problem and the parameters of the architecture are adjusted using Expectation-
Maximization (EM) algorithm.

Another composition of multi-level architecture of experts and gates was proposed by Kirsch et.
al. [10]. They too propose an EM algorithm to learn the parameters of the architecture. The
difference between [8] and [10] is that while the former has experts only in the first level, the latter is
a composition of experts at each level where the choice of the experts at each level is determined by
the gate at that level.

4 How are tasks divided into sub tasks by the gate in the MoE architecture?

An interpretable task decomposition, restating here from Section 1, is one in which either: (1) the
gating network learns a meaningful decomposition of the input space into regions with natural ’rules’.
For example, for a classification task it would use different experts to predict different classes; or (2)
each expert learns non-intersecting functions or subsets of the task which implicitly satisfies case (1).
Hence, it is important to see how the task is allocated to the experts by the gate and what the experts
and the gate are learning in order to analyze interpretability.

So, we implemented the different MoE architectures outlined in Section 31. Since it is always best
to start simple, we started with a toy classification problem of 2D mixture of Gaussians with 6
components, shown in Figure 2. Each component corresponds to a class and so we have a 6 class
classification problem. There are 2, 400 training samples and 600 test samples. The MoE model
consists of simple linear experts and gate networks. We used RMSProp optimizer for updating the
parameters. The experts and the gate are jointly trained on the loss for the corresponding architectures.

The inputs to all the expert and gate networks are the same. Multiple runs of the experiments with
the four different models have shown that the expectation model consistently partitions the data
interpretably for the toy classification dataset, whereas the EM, pre-softmax and stochastic models do
not. So, in the interest of space we report the results of the expectation model for all our experiments
in this paper. The results for multiple runs of all the 4 architectures for the toy dataset are in Appendix
A.1. The expectation model is also the model that potentially allows reduction of computation,
because the gate can select the best expert to use, and then use only that expert. The EM model has
the slowest training time compared to the other 3 architectures.

1we did not implement the multi-level experts and gates but used the EM algorithm from Kirsch et. al. [10]
to train a single level of experts and one gate to compare it to training with the other architectures that use back
propagation.
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Figure 2: Toy classification dataset with simple 2D 6 classes Gaussian mixture

Figure 3: Test data class predictions by the trained MoE expectation model and the individual experts
along with the samples gated to the expert by the gate (shaded regions). Red ‘x’ are the mis-classified
samples.

Figure 3 shows class predictions of the final learnt expectation model and each of the individual
experts with 2 experts. We can see that the final model performs well on the toy classification task
with few mis-classfications, marked as red ‘x’. Figure 3 also shows the gate selection of the experts
for samples of each class as the shaded regions in the final model. The class predictions by each
expert in Figure 3 shows that the classification task of 6 classes is divided among the experts. That is,
each expert learns to classify a subset of the classes as expected. The shaded region in each expert
shows the samples gated to that expert by the gate during prediction.

Let us now see if either or both cases of interpretability are achieved by the trained MoE models for
the toy classification problem. The gate partition of the input space, of the toy classification dataset,
among the experts is shown in Figure 3 for the expectation model with 2 experts. We see that the
model’s gate partitions the input space linearly such that the samples of the same class are classified
by the same expert. Hence we see that case (1) is achieved with simple linear experts and gate.

Now let us check for case (2). Figure 3 shows that there is a clean decomposition of the subtasks
between the experts, satisfying case (2). That is, the subsets of classes learnt by each expert are
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non-intersecting. So, for the toy classification task, the expectation model with 2 experts achieves
both cases (1) and (2). Hence, we see that GMNNs can produce interpretable task decomposition.

5 Does the gate decomposition of the task among the experts guarantee
interpretability?

Let us proceed to the more complex problem of MNIST [12] digits classification and again check if
the cases are satisfied. We used ≈ 10, 000 training samples and 2, 000 test samples containing all the
digits. Each expert and the gate is a simple convolutional network with a single convolutional layer
and 2 hidden layers with ReLU activation. From Figure 4a, the confusion matrix of the predictions
by the MoE expectation model, we see that the model accuracy is good. However, from the expert
utilization table in Figure 4b, we see that only 3 of 5 experts are used with expert 5 used for most of
the samples. For some digits, such as, 7 and 9, both experts 4 and 5 are selected. So, for the more
complex problem, the gate task decomposition is not interpretable as it does not achieve either case
(1) or (2).

(a) (b)

Figure 4: (a) Confusion matrix of predictions of the MNIST test data by MoE expectation model (b)
Experts used by the gate for classification of each digit.

Since the MNIST dataset is homogeneous, as it contains only digits images, we thought we
should try with a dataset that contains clearly very different sets of images, and see if the
gate can better decompose the task between the experts. We created such a dataset by com-
bining the FashionMNIST (FMNIST) [21] and MNIST datasets. We chose 6 classes, [t −
shirt, trouser, pullover, dress, coat, sandal], from FMNIST and 6 classes,[4, 5, 6, 7, 8, 9],
from MNIST and combined the data to create one dataset of 12 classes.

(a) (b)

Figure 5: (a) Confusion matrix of predictions of the combined FMNIST and MNIST test data by
MoE expectation model (b) Experts used by the gate for classification of each image.

Figures 5b shows that the gate is still not able to do a good task decomposition as it uses expert 5
to learn class sandal from FMNIST and digit 4 from MNIST and expert 1 to learn a mix of classes
from FMNIST and MNIST. Hence, we see that a good task decomposition in GMNNs is not always
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guaranteed even in a seemingly trivial case where the images of FMNIST and MNIST are clearly
quite different from each other. Let us now analyse the possible reasons for bad task decompositions.

6 Does an interpretable task decomposition actually exist and can the gate
learn it?

The simplest way to train a GMNN is to train the gate and experts at the same time, ‘end-to-end’, by
gradient descent. During training the gating probabilities for each sample determines which experts
get trained on that sample, that is, gating interacts with training and in effect experts are trained only
when they are chosen by the gating network. However, in Section 4 we saw that the existing MoE
architectures trained ‘end-to-end’ do not necessarily decompose the task interpretably especially
for the more complex datasets. Why is this? Three possible hypothesis are that: (h1) there is a
training disadvantage for the interpretable task decomposition, that is, the training converges slower;
(h2) interpretable decomposition leads to a higher overall error rate; or (h3) the heuristic of jointly
optimising gate and experts may be insufficiently good to find a clean decomposition.

Figure 6: Experiment designed to analyse if there is a training or error advantage for bad decomposi-
tions

We designed an experiment, summarized in Figure 6, to test hypothesis (h1) and (h2). Can (1)
a gate trained with un-trained experts; and (2) a gate trained with pre-trained experts, trained on
interpretable partitions of the dataset, train a new set of experts by decomposing the task similar to
the experts the gates were learned from? This enables us to check the performance of the gate task
decompositions for an interpretable partition vs an un-interpretable partition.

Firstly, let us define interpretable task decompositions for the MNIST dataset and determine if the
gate can learn these decompositions. We split the 10 digits into 5 sets of 5 pairs of digits, such as
{[0, 1], [2, 5], [3, 4], [6, 9], [7, 8]}, avoiding pairs of digits that are usually mis-classified as each other,
for example, [3, 8] and [4, 9]. We used 5 experts, each of which was trained with only data samples of
one of the 5 pairs of digits. We then fixed the parameters of these pre-trained experts and trained the
gate with the same. The gate expert selection table for one of these splits, seen in Figure 7a (gate
expert selection tables for the rest of the splits are in Appendix A.2), shows that the gate can indeed
learn to select the correct expert for each digit and hence learn an interpretable task decomposition.
Figure 7b shows the gate expert selection table for one split of the combined FMNIST and MNIST
dataset, trained similarly (gate expert selection tables for the rest of the splits are in Appendix A.2).
We again see that the gate can learn to select the correct expert for each class in the combined dataset.
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(a) MNIST: {[0,1], [2,5], [3,4], [6,9], [7,8]} (b) FMNIST and MNIST: {[t-shirt,Trouser],
[Pullover,Dress],[Coat,Sandal],[4,5],[6,7],[8,9]}

Figure 7: Experts selected by the gate for test data classification, for each class, by models trained
with experts pre-trained on corresponding custom splits of the classes.

We then fixed the parameters of the pre-trained gates and trained the MoE model with the pre-trained
gate and new experts. We tested hypothesis (h1) and (h2) with the new expert parameters initialized
to: (i) default parameters; and, (ii) the same initial parameters of the experts the gates were trained
from. In both cases (1) and (2) the gate decomposed the tasks exactly as in Figures 4b and 7a
respectively for the MNIST dataset and similarly as Figures 5b and 7b for the combined FMNIST
and MNIST dataset.

(a) (b)

(c) (d)

Figure 8: Comparison of training loss and validation error for pre-trained gate, trained with experts
pre-trained on custom partition of classes and un-trained experts, and then training new experts with
default parameter initialization and experts with the same initial parameter initialization as the experts
trained from for MNIST and combined FMNIST and MNIST datasets.

Let us now check the training loss and error of the models for cases (1) and (2). Figure 8 shows
the average training loss and average validation error, both averaged over 5 runs of the experiment
for MNIST and combined FMNIST and MNIST datasets. From Figures 8a and 8b we see that the
interpretable model trained with pre-trained experts converges faster than the un-interpretable model
trained with un-trained experts and has a lower error rate for MNIST dataset. For the combined
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FMNIST and MNIST dataset the loss for both cases are similar as seen in Figure 8c. But the error
rate is again better for the model trained with pre-trained experts as seen in Figure 8d. We also see
that the results are independent of the expert weight initialization. Hence, we see that there is no
learning or error advantage for a bad decomposition.

Lastly, we check if the heuristic of jointly training the gate and expert is sufficiently good for a good
decomposition. We tested this by training an MoE expectation model with 2 linear experts with
different learning rates, on the toy classification dataset and measured the training loss and sample
distribution between them over the epochs (averaged over 10 runs of the experiment), shown in Figure
9. Figure 9b shows the training loss of the 2 experts. We see that the expert with higher learning rate
(faster expert) converges faster than the expert with lower learning rate (slower expert). This results
in the faster expert grabbing more samples through out the training, starving the slower expert as
seen in Figure 9a. Hence, the un-interpretable task decomposition is most likely due to the heuristic
of jointly training the expert and gate ‘end-to-end’ resulting in unequitable data samples allocation
between the experts during training.

(a) (b)

Figure 9: Training (a) sample distributions, and (b) loss of 2 linear experts with different learning
rates for the toy classification dataset.

In these preliminary experiments we observe that, though clean decompositions do exist with a clear
learning advantage and no high error disadvantage, the gate does not learn these clean decompositions
when both experts and the gate and jointly trained ‘end-to-end’. This could be because some experts
learn early, grabbing the training data, starving the other experts of training data.

7 What are the pathological cases of task decomposition?

The experiments have revealed two pathological cases:

1. One expert learns all the classes - This is a known problem and Kirsch et. al. [10] refer
to it as module collapse. This occurs when the gate selects the same expert for all the
samples. In this case the MoE output does not depend on the gate. This could lead to poor
interpretability as in effect this is the same as the single model.

2. One expert learns only one class - This case has not been previously explicitly reported
and occurs when an expert classifies all inputs as the same class. In this case the gate does
all the classification and could result in poor transferability.

Both these cases suggest poor allocation of data samples to the experts, by the gate, subsequently
leading to either over use or starvation of experts. For interpretability and transferability we need
to avoid both these cases. Shazeer et. al. [19] proposed adding a regularization term to the loss
that measures the coefficient of variation of the gate output probabilities to avoid module collapse.
We measured the average gate outputs (which are the expert selection probabilities) over all the
samples for each epoch with and without this regularization. Gate probability for each expert for each
sample is the probability of that expert being selected for that sample. The average gate probability
gives an idea of how many times an expert is selected by the gate. Figure 10 shows the average
gate probabilities with and without regularization and we see from Figures 10b and 10d that the
regularization does lead to more equitable utilization of all experts for both the MNIST and combined
FMNIST and MNIST datasets.
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(a) Without regularization (b) With regularization

(c) Without regularization (d) With regularization

Figure 10: Average gate probabilities per expert with and without gate coefficient of variation
regularization for equitable expert utilization for MNIST and combined FMNIST and MNIST
datasets.

However, an equitable utilization of experts does not necessarily lead to an interpretable task decom-
position. Figure 11 compares the expert selection by classes for the model trained with regularization,
with a model trained with one possible interpretable task decomposition for MNIST and the combined
FMNIST and MNIST datasets. We see in Figures 11a and 11c that with regularization the gate
utilizes the experts more equitably, but the decomposition is not as clean as that in Figures 11b and
11d of the interpretable task decompositions. For example, for digit 7 in Figure 11a the gate uses
Experts 1 and 2 and for digit 2 it uses Experts 2 and 3. But we do see that by changing the training
dynamics, adding regularization in this case, we can improve the task decomposition.

(a) MNIST: With regularization (b) MNIST: {[0,1], [2,5], [3,4], [6,9], [7,8]}

(c) FMNIST and MNIST: With regularization (d) FMNIST and MNIST:{[t-shirt,Trouser],
[Pullover,Dress], [Coat,Sandal], [4,5],[6,7],[8,9]}

Figure 11: (a)(c) Experts used by the gate for classification of each class with regularization (b)(d)
Experts used by the gate for classification of each class with pre-trained experts for custom splits of
the dataset.
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8 Discussions and Conclusions

In this paper we have presented various experiments we conducted to better understand how the gate
decomposes the tasks between modules in GMNNs and analyze if GMNNs can lead to interpretable
models. Our experiments have revealed that GMNNs are indeed inherently interpretable, however,
the existing architectures and methods of training them do not necessarily guarantee an interpretable
gate decomposition of the tasks among the modules. We also noticed that there is no learning or error
disadvantage for the gate to learn an interpretable task decomposition. Hence, it is most likely the
heuristic of jointly optimising the gate and experts that leads to uninterpretable task decompositions.

If we could achieve an interpretable task decomposition between the modules then, we can ensure
error attribution to either the gate or the modules and additionally the modules would be better suited
for transferability.

9 Future Work

We have identified two main problems that could lead to un-interpretable GMNNs: (1) Poor allocation
of training examples leading to poor expert utilization and starvation; and (2) unpredictable task
decomposition. We are currently working on the following approaches to improve both these
conditions:

1. It seems only natural that since we want the experts to learn different sub-tasks we should
additionally include a loss term that maximises the diversity of what each expert learns.

2. Train the gate with additional criteria than just inputs. One way of achieving this, indepen-
dent of the application, would be to augment the gate input with the expert outputs.

3. Decoupling training of the experts and gating by having a double headed architecture. That
is, training allocation can be made softer than gating decisions.

4. During the initial part of the training let each expert get a fixed fraction of the data randomly
sampled. This should bootstrap the experts smoothly.

5. Try other mechanisms of generating expert weighting by the gate instead of softmax, such
as escort transformation [14] because it could have better training dynamics.
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A Appendix

A.1 Toy classification task outputs for EM, pre-softmax and stochastic MoE models

(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 12: Toy classification test data class predictions by the trained MoE EM model and the
individual experts along with the samples gated to the expert by the gate (shaded regions). Red ‘x’
are the mis-classified samples.
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 13: Toy classification test data class predictions by the trained MoE pre-softmax model and
the individual experts along with the samples gated to the expert by the gate (shaded regions). Red ‘x’
are the mis-classified samples.
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 14: Toy classification test data class predictions by the trained MoE expectation model and
the individual experts along with the samples gated to the expert by the gate (shaded regions). Red ‘x’
are the mis-classified samples.
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 15: Toy classification test data class predictions by the trained MoE stochastic model and the
individual experts along with the samples gated to the expert by the gate (shaded regions). Red ‘x’
are the mis-classified samples.
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A.2 Gate expert selection tables for gate trained with pre-trained experts trained on custom
data splits

(i) {{0,3},{1,2},{4,7},{5,9},{6,8}} (ii) {{0,4},{1,8},{2,9},{3,6},{5,7}}

(iii) {{0,5},{1,9},{2,6},{3,7},{4,8}} (iv) {{0,9},{1,4},{2,7},{3,6},{5,8}}

Figure 16: Experts selected by the gate for classification of each digit for 4 different splits of the
MNIST dataset.

(i) {{t-shirt,dress},{trouser,coat},{pullover,sandal},
{4,7},{5,9},{6,8}

(ii) {{t-shirt,sandal},{trouser,pullover},{dress,coat},
{6,8},{7,10},{9,11}

Figure 17: Experts selected by the gate for classification of each digit for 2 different splits of the
combined FMNIST and MNIST dataset.
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