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Abstract

The goal of evaluating explanations is often to determine suitable explanations for
a desired real-world use case. Traditionally, evaluation of explanations follows
two steps: first, proxy metrics (an algorithmic evaluation based on desirable
properties) and then, human user studies (an experiment with real users that puts
explanations to the test in real use cases). The former is efficient to compute but
is typically disconnected from the use case itself. Meanwhile, the latter is time-
consuming to organize and often difficult to get right. We argue for the inclusion
of a new step in the evaluation workflow that capitalizes on the strengths of both
proxy metrics and user studies called simulated user evaluations, an algorithmic
evaluation grounded in real use cases. We provide a two-phase framework to
conduct simulated user evaluations and demonstrate that, by instantiating this
framework for local explanations, we can use simulated user evaluations to recreate
findings from existing user studies for two use cases (identifying data bugs and
performing forward simulation). Additionally, we demonstrate the ability to use
simulated user evaluations to provide insight into the design of new studies.

1 Introduction

There exists a gap between the desired real-world use cases of interpretability and the technical
objectives for which interpretable machine learning (IML) methods are optimized [1]. As a result, it
is difficult for (a) end-users to identify suitable IML methods for their use cases and (b) researchers
to ground their new IML methods in real applications. Towards bridging this gap, one would ideally
conduct user studies measure how accurately users can complete a real-world task when given
explanations (Figure 1, Right). Indeed, a few recent works have conducted these types of studies
(e.g., [2–6]). While user studies are the gold standard for IML evaluation [7], they are often infeasible
for most IML researchers to run because: (1) they are resource intensive, requiring the recruitment of
and compensation for real users; (2) they are time-consuming to conduct, requiring the coordination
of many participants; and (3) they are difficult to set up correctly in a way that is carefully controlled
to isolate the effect of explanations, and consequently often yield noisy results.

Due to the difficulties of running user studies, explanations are more commonly first evaluated using
proxy metrics (Figure 1, Left), which measure the extent to which an explanation captures seemingly
desirable properties (e.g., faithfulness to model [8, 9], stability over runs [10, 11]). The algorithmic
nature of proxy metrics is advantageous for researchers because they make evaluations easy to run
and reproduce, but such metrics often fail to reflect desired aspects of the use case that would have
been captured in a user study [1, 7].

To contextualize this discussion, we provide a running example based on a use case studied in [3],
where a researcher is interested in studying whether explanations can help ML engineers identify bugs
in an ML pipeline. Specifically, the bug studied occurs when the data used to train the predictive ML
model was corrupted (e.g., a feature was imputed incorrectly). To evaluate an explanation method’s
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Figure 1: Our proposed IML evaluation workflow, including current, common evaluation steps (Proxy
Metrics and Traditional User Study) as well as our new evaluation step Simulated User Evaluations.
For the researcher, running simulated user evaluation is a natural preceding step to a traditional user
study because defining a use-case grounded set-up is necessary for both. However, for a traditional
user study, there is the additional step of implementing the study, which would entail recruiting
participants and setting up a realistic use case environment for the participants to interact in. Note
that the exact way that humans would acquire domain knowledge might differ from the agent.

usefulness for identifying the bug, the researcher could conduct an expensive user study where the
researcher would have to recruit many ML engineers to participate. The researcher would also need
to ensure that their study design controls for all possible confounding factors. On the other hand, the
researcher could try to evaluate the explanations using proxy metrics, but would get stuck because
there is no known proxy metric to measure the utility of an explanation for finding this particular bug.

In this work, we argue for the addition of a new step in the evaluation pipeline called simulated
user evaluations (Figure 1, Middle). Simulated user evaluations leverage the strengths of both proxy
metrics and traditional user studies by being both algorithmic (consequently, fast and reproducible)
and use-case specific (i.e., grounded in a real world use case such as model debugging). To emulate
the real user evaluation, simulated user evaluations are designed to encode as much of the same
context of the use case as the traditional user study.

Our approach trains an algorithmic agent to measure whether an explanation method contains the
predictive information necessary for a researcher’s real world use-case of interest. Because an
explanation must be predictive of the use-case in order for it to be useful to a human, researchers can
use simulated user evaluations to efficiently screen candidate explanation methods for a user study.
Importantly, we note that our algorithmic agent does not capture the many complex psychological or
cognitive factors that influence the ability of humans to reason about explanations [12]. Incorporating
these additional factors remains an open direction for future work.

While for these reasons simulated user evaluations cannot replace user evaluations, simulated user
evaluations can provide critical information on whether or not an explanation method is predictive for
a use case. This information is typically not captured by any existing proxy metrics. We argue that
simulated user evaluations should be regarded as a foundational step toward building more efficient
and reproducible evaluations of explanation methods.

Our contributions in this work is two-fold:

• Our first contribution in Section 3 is a general two-phase framework to conduct simulated
user evaluations. Our framework uses an algorithmic agent to simulate an end user that
uses explanations in a real world use case. This framework consists of step (1) domain
acquisition, where the agent learns the relevant domain knowledge for the use case, and step
(2) knowledge evaluation, where the agent is evaluated on unseen examples of the use case
as a way to measure explanation utility.

• Our second contribution in Section 4 instantiates our general framework to evaluate the
utility of local explanations (e.g. [8, 13]). In Section 5, we demonstrate that our framework
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is able to corroborate existing findings from two user studies papers [3, 4] related to local
explanations for two use cases. We also showcase how, once the set-up has been done for a
given use case, our framework can be used to easily provide additional insights. For example,
we find that certain explanation methods perform just as well as the ones considered in the
original studies.

2 Related Work
Types of User Studies on Explanations: A large number of prior works have user studies to evaluate
IML methods: [14] surveys the wide and diverse goals of IML user studies. Specifically, IML user
studies can differ in the independent variable that is changed (e.g., the explanation method used [3, 4]
or the visualization of the explanation [15]) or the dependent variable(s) being measured (e.g., the
user’s accuracy on a task [3, 4, 12, 16, 17], time required to complete the task [12], or trust in the ML
model [18]). We focus on the set of user studies that measure how explanation methods (independent
variable) affect how accurately users can complete a real-world task (dependent variable).

We group existing user studies on explanations that measure the accuracy of users on a real-world
task into two categories. The first category studies the utility of explanations in use cases where the
predictiveness of the explanation method is already known to researchers. For example, [12, 16, 17]
ask users to answer simple comprehension questions about a decision set explanation, where these
explanations contain the information necessary to complete the task with perfect accuracy. Thus,
these studies measure humans’ ability to comprehend and interpret the explanations without error.
The second category includes studies where the predictiveness of the explanation method is not
known to researchers. Our framework was developed to aid researchers in this second setting to
quickly validate whether or not an explanation method is predictive. Researchers can then efficiently
eliminate poor explanation methods or discover promising explanation methods for their use case.

Connecting Methods and Real-world Use Cases: [19] was one of the first to highlight the discon-
nect between the many goals of interpretability that are potentially discordant with existing methods,
and as such [1, 20] stressed the need for more studies that explicitly study connections between
methods and a specific downstream use case. There have been an increasing number of user studies
that have started making these connections including [2–5] which were conducted to understand
whether explanations are helpful for humans in a variety of real-world use cases ranging from fraud
detection [5] to model debugging [3]. The findings from these user studies are mixed, with some find-
ing that explanations are not always helpful, particularly when compared to more naive baselines like
providing the score or model prediction to the user. As such, we also consider these naive baselines
in our study. We reproduce findings from use cases studied in [3, 4] with an automated algorithmic
approach that then allowed us to dive deeper and perform follow-up (simulated) experiments.

Algorithmic Evaluation Frameworks: Many existing algorithmic evaluation frameworks focus
on measuring desirable properties of explanations relating to the faithfulness of the explanation to
the model [21–23]. These evaluations are typically disconnected from the downstream use case of
interest. In terms of algorithmic evaluations that are grounded in a use case, we were able to identify
only a handful of examples (e.g., [6, 24, 25]). In this work, we present a generalizable, algorithmic
framework that allows a researcher to specify their own use case to perform simulated user evaluation,
and we demonstrate in Section 3 how these prior use cases can be cast in our general framework.

While we study whether explanations can be helpful for a downstream use case by simulating a user
evaluation, another line of work studies the utility of explanations to improve the model training
process [26–28]. The most salient difference between these two paradigms is the former assumes
that explanations might help humans on a use case that they might not have been able to do as easily
otherwise, while the latter does not include a human in the loop.

3 General Framework

We provide a general framework (as shown in Figure 1, Middle) for training an algorithmic agent
that simulates a human using explanations for a downstream use case. Our two-part framework2 is as
follows:

2Note on terminology: in the following sections, we refer to the framework as the process to train the agent
through these two phases and the agent as the simulated user.
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First, our framework begins with the phase of domain acquisition. In the domain acquisition phase,
the agent sees labeled training examples for the downstream use case as a way to learn information
about the use case (e.g., what data-points and explanations look like with a bug or not) and also the
dataset context. This step is motivated by our observation that user study participants are sometimes
provided some examples to convey relevant knowledge for the use case (e.g., presented example
explanations and expected conclusions). For the simulated algorithmic agent, this step is synonymous
to training the agent model.

Once the agent has learned the relevant knowledge, as evidenced by a high accuracy on the training
examples, we move onto the second phase of knowledge evaluation. This phase is analogous to the
evaluation portion of typical user studies, where humans are put to the test on new examples to see if
they are able to use a given explanation effectively. Similarly, the algorithmic agent is evaluated on
unseen test examples. Its accuracy on these examples is a measure of the utility of the explanation for
the use case. We note that existing one-off examples of algorithmic evaluations of explanations can
also be cast under these two steps as described in Table 1.

Table 1: Unifying existing ad-hoc algorithmic evaluations under our framework. These algorithmic
agents had considerably simpler domain acquisition processes, which were largely heuristic based as
opposed to learning from data.

Expo[6] Influence Function[25], RPS[24]

Use Case
Use explanation to determine how to
modify features of an instance
to achieve target prediction

Use explanation to identify
examples that were mislabeled

Domain
Acquisition

The agent uses a randomized, greedy
heuristic and picks the largest feature

The agent uses a heuristic, such as
picking a point with large influence

Knowledge
Evaluation

Evaluate the number of modifications
that were made to reach
the target prediction

Evaluate the number of correct points
the agent selected for inspection

Compared to a human user, the researcher would be able to more carefully control the evaluation
process with an algorithmic agent by eliminating the confounding factors that affect a human user’s
performance in a real user study. For example, while a human user study may have high per-subject
variation dependent on each participant’s prior knowledge or comfort with the task, a simulated
agent makes deterministic predictions on each test example. This is important because it helps the
researcher to isolate the effect of explanations (i.e., its predictiveness) on the agent’s performance.

4 Simulated User Evaluations for Local Explanations

We instantiate our general framework to study the utility of local explanations, which encompasses
the set of techniques that explain why a model made a prediction at a specific point. We apply our
local explanation framework to two broad use cases: (1) performing forward simulation and (2)
detecting data bugs, replicating use cases considered in previous user studies [2–4].

More specifically, our framework trains an agent for a researcher’s given context specification, which
includes the relevant information (e.g. data-points and their corresponding explanations) to predict
the the ground truth answer for a use case, which we call the task label (e.g., What is the model’s
prediction for this X value? Does the model which produced these explanation contain a bug?).

Context Specification: Just as in a real user study, the researcher must first make several important
decisions to specify the scope of their evaluation:

• First, the researcher must decide which explanation methods they would like to evaluate.

• Second, the researcher must decide the the base model family, which is the family of
predictive models to be explained.

• Third, the researcher must choose a base dataset on which the explanation method’s utility
will be evaluated.
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• Fourth, the researcher must specify the use case they would like to study, such as model
debugging or forward simulation.

The simulated user evaluation then compares the utility of the researcher’s selected explanation
methods for the researcher’s selected use case when explaining models from the base model family
on the base dataset. For our experiments in Section 5, we replicate the context specification from
previous user studies [2–4] to the best of our ability.

Training & Evaluation: After the researcher completes context specification, the next step is to
train and evaluate the simulated agent. Our algorithmic framework generates observations that mimic
the series of observations containing information (such as data-point and explanation pairs) that
humans use to complete the task in real user studies. Our agent is then trained on these observations
to predict the task label. Sections 4.1 and 4.2 describe how we construct the observations given as
input to the algorithmic agent for each use case. Section 4.3 discusses how these observations are
used to train (domain acquisition) and evaluate (knowledge evaluation) our algorithmic agent.

4.1 Forward Simulation

The forward simulation use case is motivated by [4], where the authors test whether providing
users with explanations (the observation contains both Xi and E(Xi, f)) helps them better predict a
model’s behavior when compared to a control setting in which users are not given explanations (the
observation would only contain Xi). As such, we train an agent A to predict a model f ’s output, so
the task label is f(Xi).

Following the procedure from [4], we split the base dataset D into train, test, and validation sets. In
the domain acquisition phase, the agent is trained on a dataset of observations (here each observation
Oi = (Xi, E(Xi, f)) is a tuple of one data-point and explanation) generated from the train set (Xi

from the train set). Then, in the knowledge evaluation phase, the agentA is evaluated on observations
generated the unseen validation set (Xi from the validation set). Clarification on the terminology for
forward simulation is provided in Table 2. A more detailed algorithm is provided in Appendix A.

Table 2: Useful terminology to understand how our agent is trained for forward simulation.

Terminology Description
Base Model Class F E.g., Random Forest, LightGBM
Base Dataset D = {(Xi, yi)} Each Xi ∈ Rd

Model instance f Trained on Dtrain

Explanation Method E : Xi × f → e Either E is an explanation method or baseline
Observation Oi = (Xi, E(Xi, f)) If E is a local explanation and Xi ∈ Rd, then Oi ∈ R2d.
Agent A : Oi → f(Xi) Our agent learns to map data-point and

explanation pairs Oi = (Xi, E(Xi, f)) to f(Xi)

4.2 Data Bugs

The set of data bug use cases consider whether explanations help a user to predict whether the model
from which the explanation was derived was trained on a dataset containing a systematic error. For
this use case, the researcher additionally needs to provide a "bug definition" B, which corrupts the
given dataset. We consider bug definitions that were studied in prior user studies [2, 3] and summarize
their motivation for identifying each of these bugs:

• Missing value [3]: Impute missing values for a feature using the mean value. This can
inject bias into the models towards the mean value.

• Redundant feature [3]: The dataset contains features that are redundant, or contain the
same predictive information. The true importance of the quantity that the redundant features
measure may be distributed between the redundant features. Thus, none of the redundant
features’ importance scores reflect the true underlying measure’s importance.

• Label Error [2]: A portion of the data-points are incorrectly labeled. This can cause the
model to learn wrong associations.
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A distinguishing feature of identifying data bugs from performing forward simulation is that the
humans in [3] were given multiple data-point and explanation pairs per observation because it might
be easier to detect that a model bug if given more than one data-point. For example, the missing
value bug is identified by looking at a distribution over the explanation scores across data-points for a
given feature (see Appendix B.4) and would not have been possible if the observation contained only
one data-point. As such, we also give our agent the ability to learn from multiple data-points, which
means that each observation is a set of data-point and explanation pairs. Note the slight change in
notation for model debugging in Table 3.

Table 3: Useful terminology to understand how our agent is trained for model debugging.

Terminology Description
Base Model Class F E.g., Random Forest, LightGBM
Base Dataset D = {(Xi, yi)} Each Xi ∈ Rd

Subset of base dataset Dj ⊂ D
Model instance fj Trained on Dj

Explanation Method E : Xj
i × fj → e Xj

i ∈ Dj , E is an explanation method or baseline
Bug definition B : Dj → D

′

j

Observation Oj = {(Xj
i , E(Xj

i , fj))}Si=1 Set of S data-point and explanation tuples
(Xj

i , E(Xj
i , fj)) for Xj

i ∼ Dj

Agent A : Oj → yj Task labels yj = 1 if Dj has a bug, 0 otherwise

To train our agent, we generate a dataset of size N of observations {O1, ..., ON}. This dataset of
observations is then split into a train and test set that corresponds to the domain acquisition and
knowledge evaluation respectively. Notice that each observation Oj given as input to the agent is a
set of S data-point, explanation pairs. To create each observation Oj , we first need a model instance
fj to generate explanations. We train fj on a subsample Dj of the the original base dataset D. We
subsample the base dataset so that the agent can learn how to use explanations that are defined on
a consistent set of features, while also observing potentially different behaviors on the different
subsampled datasets. To get ground truth task labels yj , half of the time we apply bug B to subset
Dj (set yj = 1) so that half of the observations have explanations from bugged models and the other
half from unbugged models. A more detailed algorithm is provided in Appendix A.

4.3 Instantiating Algorithmic Agent

For the agent model, we leverage DeepSets [29], a canonical model that is able to handle permutation
invariance on its input. This property is desirable and necessary for our agent to have because in
the data bugs use case, the agent is given as input a set of data-point and explanation tuples that do
not have a pre-defined ordering. The exact model architecture is provided in Appendix B.2. In our
experiments we use Adam with learning rate 1e− 4 for our optimizer and binary cross-entropy for
the loss function.

We observe in the following section that the DeepSets agent model class accurately captures whether
or not there is predictive information in an explanation across the wide range of datasets/tasks we
used in our experiments. An open direction for future work is how to select the appropriate agent
model class for other types of data, such as image or multi-modal data.

5 Experiments

We provide experimental details to reproduce the experimental set-up of the original studies for both
the forward simulation and debugging use cases.3 This means we replicate the context specifications
studied in [3, 4].

Base Datasets: Both user studies that we replicate used the UCI Adult dataset4. For diversity
of results, we additionally run experiments with three additional UCI datasets (Bank Marketing5,

3Code repository can be found at https://github.com/valeriechen/sim-eval-public.
4https://archive.ics.uci.edu/ml/datasets/Adult
5https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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Occupancy Detection6, and Online Shopper Purchasing Intention7) for the label errors bug. In
Appendix B.1, we discuss how each dataset was processed. All datasets considered had a binary
target label and had at least 10, 000 points.

Base Models: For the forward simulation use case, we use a Random Forest as the base model,
following [4]. For the data bugs use case, we use LightGBM [30] as the base model, following [3].

Explanations: For forward simulation, the agent receives no explanation in the baseline setting (so
E is simply the empty set). For data bugs, we provide the agent with the model prediction as a
baseline (so E : Xi × f → f(Xi)).

We focus on local feature attribution explanation methods (e.g. LIME [8] and SHAP [13]). However,
our framework can also handle global feature attribution explanation methods, such as Anchors
[31] and GAMs [32] which were considered in [4] and [3] respectively, if a local explanation can
be derived from them. We discuss how we convert Anchors and GAMs to local explanations in
Appendix B.3.

Framework Hyperparameters: For forward simulation, we generate an observation dataset of up
to size 2000 and evaluate on 250 new observations. For data bugs, we generate a training set for
domain acquisition of size 1000 and perform knowledge evaluation on a dataset of size 250.

5.1 Forward Simulation

To recreate the original setting from [4], we compare the prediction accuracy of our agent on the
‘No explanation’ setting where it receives either 16 or 32 randomly sampled validation observations
without explanation with its prediction accuracy on 16 or 32 observations when given an explanation.
With our algorithmic framework, we were also able to explore what happens if the participants
is given a larger number of data-point and explanation pairs in the domain acquisition phase by
increasing the number of observations from 16-32 up to 2000. We then tested the agent on 3 different
samples of 32 observations from the 250 validation observations, where results are shown in Table 4.

Table 4: We vary the number of training observations the agent receives to perform forward simulation,
recreating results from [4] in the 16 and 32 column and providing additional results for increased
number of training observations. LIME and Anchors were explanations considered in the original
paper while we additionally evaluated SHAP and GAM.

Explanation 16 32 100 1000 2000

LIME 89.3% 89.2% 91.9% 94.8% 95.6%
Anchors 81.9% 83.4% 96.7% 99.1% 99.4%
SHAP 91.2% 94.8% 97.1% 99.7% 99.5%
GAM 81.7% 86.2% 96.1% 98.0% 98.3%
No explanation 77.8% 78.6% 85.1% 91.2% 92.4%

Sim-User-Eval Findings: As shown in Table 4, LIME is a good choice for the forward simulation
use case as an agent exhibits a significant increase in accuracy when using it over the baseline. At
16 or 32 training observations, the difference between Anchors and No explanation is small. This
corroborates findings from [4], where they found that only LIME had a significant difference over the
no explanation baseline when they provided 16 or 32 training observations. However, if they had
performed simulated user evaluations, they would have noticed that SHAP could have also been a
good option to try.

5.2 Data bugs

Missing Values: The missing values bug was originally implemented by replacing the ‘Age’ value
with the mean value of 38 for 10% of adults with > 50k income. We note that while we attempted
to recreate the same setting used in [3], the exact hyperparameters of their LightGBM model and
dataset preprocessing were not provided. Thus, we had to artificially increase the bugged percentage
to 30% to reproduce the middle plot in Figure 1 from [3] (for more details, see Appendix B.4).

6https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
7https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset
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Table 5: Recreating [3]’s missing values setting, showing that both SHAP and GAM were successful
in finding the bug with high accuracy. We additionally vary the size of the observation set.

Observation Set Size
Explanation 1 10 100 1000 2000

SHAP 47.9% 83.4% 99.3% 99.8% 99.5%
GAM 60.4% 86.6% 99.6% 99.5% 99.8%
LIME 52.5% 51.3% 62.5% 82.1% 82.8%
Model Prediction 52.9% 57.5% 55.4% 56.2% 52.5%

Table 6: Performing additional experiments on the Adult dataset by varying the strength of the
missing values bug for a fixed observation set size of 1000, where we observe that similar patterns as
Table 5 hold in terms of what explanations were successful.

Explanation 5% 10% 15% 20% 30%

SHAP 77.9% 92.5% 99.1% 99.8% 99.8%
GAM 61.8% 97.5% 99.5% 99.1% 99.5%
LIME 52.9% 55.8% 61.2% 59.2% 82.1%
Model Prediction 51.7% 52.9% 53.5% 55.1% 56.2%

Sim-User-Eval Findings: Similar to [3], we found that SHAP and GAMs are good choices for
identifying the missing values bug. Furthermore, as shown in Table 5, we find that accuracy of the
algorithmic agent starts to drop if there are too few explanations (i.e., observation set of size 10 or
less). This means that too few explanations do not contain sufficient signal to detect the bug. As such,
the researcher would need to figure out how to present a large number of explanations to a human user
in a human-interpretable manner. This suggests the need for a user interface where the explanation
feature values are presented in an aggregated fashion, which is indeed what the approach taken by [3]
for the user interface. Further, as seen in Table 6, we find that a researcher could make the bug more
subtle by decreasing the percentage of corrupted data-points and the explanations would still contain
enough signal for an agent to detect the bug.

Redundant Features: The redundant features bug was implemented by including two features,
‘Education’ and ‘EducationNum,’ that represent the same information. To create a version where
there is no bug, we randomize the value of one of the features so there is no correlation between
the two and only one feature contains the original information. Note that, in the original paper, they
did not have a strength of the bug, but we are easily able to study this variant of the bug with our
algorithmic framework. We increase the strength of the bug by increasing the number of data-points
in Dj that have the two correlated features.

Table 7: We vary the strength of the redundant features bug on the Adult dataset for a fixed observation
set size of 1000 and corroborate results from [3].

Explanation 10% 30% 50% 70% 90%

SHAP 61.2% 74.1% 86.2% 99.5% 99.5%
GAM 59.1% 56.2% 81.3% 99.8% 99.7%
LIME 57.1% 52.0% 55.6% 54.6% 51.3%
Model Prediction 57.9% 52.1% 51.5% 52.0% 52.9%

Sim-User-Eval Findings: Using our algorithmic agent, we found that the simulated agent had
significantly higher accuracy when given SHAP and GAM explanations as shown in Table 7. This
matches findings from [3], where a fraction of users were able to use these explanations to detect the
bug. Its accuracy was no better than random guessing when given LIME explanations or the model
prediction baseline.

Label Error: The label error bug was implemented by randomly flipping the label of a fraction of
the dataset as motivated by [2]. We experimented with the same set-up by flipping a fixed percentage
of labels on multiple UCI datasets. We first used the Adult dataset to select a setting where the best
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explanations did reasonably well (but not perfect) to ensure a sufficiently difficult use case: a label
error rate of 1% and set of 5 explanations.

Table 8: We study the label errors bug on the Adult dataset by varying the strength {1%, 5%, 10%}
of the bug for observation sets of sizes {1, 5, 10}. Note that this bug required far smaller set sizes to
detect than the previous two data bugs.

Explanation 1% 5% 10%

1 5 10 1 5 10 1 5 10
SHAP 63.5% 81.2% 87.5% 92.5% 98.5% 97.9% 96.7% 99.2% 99.5%
GAM 68.8% 85.8% 86.7% 93.3% 99.2% 99.1% 95.4% 99.5% 99.8%
LIME 55.0% 62.5% 53.3% 58.7% 56.8% 56.7% 51.5% 55.8% 55.4%
Model Prediction 56.8% 55.8% 60.0% 53.3% 50.8% 52.1% 49.5% 57.5% 52.9%

Table 9: We compare the same instantiation (1% label error and observation set of size 5) of the
label error bug on four different UCI datasets and find that the same explanation method has varying
utilities on different datasets.

Explanation Adult Bank Shopping Occupancy

SHAP 81.2% 71.6% 93.3% 99.5%
GAM 85.8% 66.7% 68.3% 99.6%
LIME 62.5% 53.3% 55.8% 58.3%
Model Prediction 55.8% 62.5% 54.5% 52.1%

Sim-User-Eval Findings: We are able to draw the same negative conclusions as [2] about the utility of
saliency maps for label error detection on image datasets (discussed in Appendix B.5). However, as
shown in Table 8, we find positive results for the same type of bug in the tabular setting. Specifically,
explanations like SHAP or GAMs could be potentially useful for detecting label errors. Additionally,
as shown in Table 9, the same explanation methods do not have the same utility for the same exact
bug on different datasets, so there is no single best explanation for all use cases. This further suggests
the need for a researcher to perform simulated user evaluations to guide the selection of candidate
explanation methods for a real user study.

6 Conclusion

In this work, we argued for the inclusion of simulated user evaluations as an integral part of the IML
evaluation workflow. To make this new type of evaluation more concrete, we proposed a two-phase
framework for describing the general simulated user evaluation problem, that endows an algorithmic
agent with necessary domain knowledge and then evaluates it on the downstream use case. We then
instantiated the framework for local explanations to evaluate the utility of a set of local explanations
on two use cases based on real user studies. We demonstrate that an algorithmic agent is able to
corroborate findings about which explanation methods are best able to help a human.

There are several exciting directions for future work on simulated user evaluations including running
a simple user study to verify some of the hypotheses that arose from the algorithmic evaluation
process on these two use cases, expanding the instantiated framework to include other modalities like
images, and adding other explanation methods to the evaluated set.
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A Use Case Algorithms

A.1 Forward simulation

• Given base dataset D, split into train/test/validation

• Train the base model f on the train set

• Let NT be size of desired training dataset and NV be size of the desired validation dataset

• SampleNT points from the train set and for each pointXi ∈ Dtrain generate an explanation
of f at that point, add the tuple (Xi, E(Xi, f)) to the training dataset.

• Repeat process for NV points but from the validation set

Note the baseline condition would be generated in the same way, but excluding the explanation.

A.2 Data bugs

• Given base dataset D, base model family F , and bug specification B

• Let N be size of desired dataset, x be the set size

• For j in N

– Subsample base dataset Dj and split into train/test/validation
– With probability 0.5, apply bug B to corrupt Dj

– Train fj on Dj

– Sample a set of S points from the Dj

– Generate an explanation E(Xj
i , fj) for each of the S points

– Add this observation Oj = {(Xj
i , E(Xj

i , fj))}Si=1 consisting of the set of data-points
and their respective explanations as the jth observation in the final dataset

B Experiments

B.1 Dataset preprocessing

In the adult dataset, we dropped the finalweight feature. In the occupancy dataset, we dropped the
date feature. In the bank dataset, we dropped the poutcome and contact features. For all datasets,
we first encoded categorical variables and MinMax scaled all features.

B.2 Deepset Architecture

The Deepset architecture [29] is characterized by two parts, the feature extractor φ and then a standard
network ρ, which takes in a summed representation from φ. Our φ network has a sequence of Dense
layers of size (2d where d is number of features, 200, 100), each followed by an ELU activation with
the exception of the last layer. The ρ network is also a sequence of Dense layers of size (100, 30, 30,
10), each followed by an ELU activation with the exception of the last layer which is followed by a
Sigmoid activation.

B.3 Converting Global Explanations to Local

For both GAM and Anchors, we used official Github implementations published by the authors.
To convert GAM to a local explanation, there was already a method in the implementation to
explain_local, so we used that out of the box.

The Anchors implementation works by returning a set of anchors for a given local instance. For
categorical variables, the anchor is one of the values that the feature can take on. For continuous
variables, the anchor could take the form of a lower and upper bound. As such, we needed to modify
the input from 2d number of features to include one additional feature for each continuous variable.
For example, if there are 5 continuous variables as in the Adult dataset, the input is now size 2d+ 5.
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B.4 Missing Values Adjustment

Figure 2 and Figure 3 show our attempt to recreate the original bug described in [3] as closely as
possible. We observe that the 30% bug for both explanation methods much more closely resembles
the figure that was presented in the original paper.

Figure 2: (Left) Image taken from the user interface from [3] that plots the distribution of SHAP
values for the age feature (Middle/Right) Distribution of SHAP values for 1000 points for 10% and
30% corruption.

Figure 3: (Left) Image taken from the user interface from [3] that plots the distribution of GAM
values for the age feature (Middle/Right) Distribution of GAM values for 1000 points for 10% and
30% corruption.

B.5 Image Results for Label Error

The experiments for [2] were performed on a dog breed dataset, where the authors considered a
few different types of bugs. One in particular was a label error bug, where the dog breed label
was randomized in the dataset before the base model was trained. For all explanation methods
considered for this bug, participants said they were able to detect the bug overwhelmingly because
the participants observed the incorrect label as opposed to using the explanation. Since the dataset
modality in [2] is images as opposed to tabular, we modified the DeepSet architecture so that the φ
network is a convolutional architecture. Following the experimental details otherwise from Section 5,
we found that with 100% accuracy, the model prediction alone was sufficient for the agent to detect
the bug. We plan to explore variations of the label error bug in the image setting to try to find a
version where explanations might actually be useful.
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